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Abstract

Open-domain questions are likely to be open-
ended and ambiguous, leading to multiple
valid answers. Existing approaches typically
adopt the rerank-then-read framework, where
a reader reads top-ranking evidence to pre-
dict answers. According to our empirical
analysis, this framework faces three problems:
first, to leverage a large reader under a mem-
ory constraint, the reranker should select only
a few relevant passages to cover diverse an-
swers, while balancing relevance and diver-
sity is non-trivial; second, the small read-
ing budget prevents the reader from access-
ing valuable retrieved evidence filtered out by
the reranker; third, when using a generative
reader to predict answers all at once based
on all selected evidence, whether a valid an-
swer will be predicted also pathologically de-
pends on the evidence of some other valid an-
swer(s). To address these issues, we propose to
answer open-domain multi-answer questions
with a recall-then-verify framework, which
separates the reasoning process of each answer
so that we can make better use of retrieved
evidence while also leveraging large mod-
els under the same memory constraint. Our
framework achieves state-of-the-art results on
two multi-answer datasets, and predicts signif-
icantly more gold answers than a rerank-then-
read system that uses an oracle reranker.

1 Introduction

Open-domain question answering (Voorhees, 1999;
Chen et al., 2017) is a long-standing task where a
question answering system goes through a large-
scale corpus to answer information-seeking ques-
tions. Previous work typically assumes that there
is only one well-defined answer for each question,
or only requires systems to predict one correct an-
swer, which largely simplifies the task. However,
humans may lack sufficient knowledge or patience

∗*Corresponding author: Minlie Huang.

Original Question: When did [You Don’t Know Jack]
come out?
Interpretation #1: When did the first video game called
[You Don’t Know Jack] come out?
Evidence #1: You Don’t Know Jack is a video game re-
leased in 1995, and the first release in ...
Answer #1: 1995
Interpretation #2: When did the Facebook game [You
Don’t Know Jack] come out on Facebook?
Evidence #2: In 2012, Jackbox Games developed and pub-
lished a social version of the game on Facebook ...
Answer #2: 2012
Interpretation #3: When did the film [You Don’t Know
Jack] come out?
Evidence #3: “You Don’t Know Jack” premiered April 24,
2010 on HBO.
Answer #3: April 24, 2010

Table 1: An example of open-domain multi-answer
questions. We display only a subset of valid answers.
In fact, [You Don’t Know Jack] can also be a song.

to frame very specific information-seeking ques-
tions, leading to open-ended and ambiguous ques-
tions with multiple valid answers. According to
Min et al. (2020b), over 50% of a sampled set of
Google search queries (Kwiatkowski et al., 2019)
are ambiguous. Figure 1 shows an example with at
least three interpretations. As can be seen from this
example, the number of valid answers depends on
both questions and relevant evidence, which chal-
lenges the ability of comprehensive exploitation of
evidence from a large-scale corpus.

Existing approaches mostly adopt the rerank-
then-read framework. A retriever retrieves hun-
dreds or thousands of relevant passages which are
later reranked by a reranker; a generative reader
then predicts all answers in sequence conditioned
on top-ranking passages. With a fixed memory
constraint1, there is a trade-off between the size of
the reader and the number of passages the reader
can process at a time. According to Min et al.
(2021), provided that the reranker is capable of

1We follow Min et al. (2021) to constrain memory usage,
which is usually a bottleneck of performance on open-domain
question answering .
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selecting a small set of highly-relevant passages
with high coverage of diverse answers, adopting a
larger reader can outperform a smaller reader us-
ing more passages. However, as shown by Section
4.4, this framework is faced with three problems:
first, due to the small reading budget, the reranker
has to balance relevance and diversity, which is
non-trivial as it is unknown beforehand that which
answers should be distributed with more passages
to convince the reader and which answers can be
safely distributed with less to save the budget for
the other answers; second, the reader has no access
to more retrieved evidence that may be valuable
but is filtered out by the reranker, while combining
information from more passages was found to be
beneficial to open-domain QA (Izacard and Grave,
2021b); third, as the reader predicts answers in se-
quence all at once, the reader learns pathological
dependencies among answers, i.e., whether a valid
answer will be predicted also depends on passages
that cover some other valid answer(s), while ideally,
prediction of a particular answer should depend on
the soundness of associated evidence itself.

To address these issues, we propose to answer
open-domain multi-answer questions with a recall-
then-verify framework. Specifically, we first use an
answer recaller to predict possible answers from
each retrieved passage individually; this can be
done with high recall, even when using a weak
model for the recaller, but at the cost of low preci-
sion due to insufficient evidence to support or refute
a candidate. We then aggregate retrieved evidence
relevant to each candidate, and verify each candi-
date with a large answer verifier. By separating the
reasoning process of each answer, our framework
avoids the problem of multiple answers sharing a
limited reading budget, and makes better use of re-
trieved evidence while also leveraging strong large
models under the same memory constraint.

Our contributions are summarized as follows:

• We empirically analyze the problems faced by
the rerank-then-read framework when dealing
with open-domain multi-answer QA.

• To address these issues, we propose to answer
open-domain multi-answer questions with a
recall-then-verify framework, which makes
better use of retrieved evidence while also
leveraging the power of large models under
the same memory constraint.

• Our framework establishes a new state-of-the-

art record on two multi-answer QA datasets
with significantly more valid predictions.

2 Related Work

Open-domain QA requires question answering sys-
tems to answer factoid questions by searching
for evidence from a large-scale corpus such as
Wikipedia (Voorhees, 1999; Chen et al., 2017).
The presence of many benchmarks has greatly pro-
moted the development of this community, such as
questions from real users like NQ (Kwiatkowski
et al., 2019) and WEBQUESTIONS (Berant et al.,
2013), and trivia questions like Quasar-T (Dhingra
et al., 2017) and TriviaQA (Joshi et al., 2017). All
these benchmarks either assume that each question
has only one answer with several alternative sur-
face forms, or only require a system to predict one
valid answer. A typical question answering system
is a pipeline as follows: an efficient retriever re-
trieves relevant passages using sparse (Mao et al.,
2021; Zhao et al., 2021) or dense (Karpukhin et al.,
2020; Xiong et al., 2021; Izacard and Grave, 2021a;
Khattab et al., 2021) representations; an optional
passage reranker (Asadi and Lin, 2013; Nogueira
and Cho, 2019; Nogueira et al., 2020) further nar-
rows down the evidence; an extractive or genera-
tive reader (Izacard and Grave, 2021b; Cheng et al.,
2021) predicts an answer conditioned on retrieved
or top-ranking passages. Nearly all previous work
focused on locating passages covering at least one
answer, or tried to predict one answer precisely.

However, both Kwiatkowski et al. (2019) and
Min et al. (2020b) reported that there is genuine
ambiguity in open-domain questions, resulting in
multiple valid answers. To study the challenge of
finding all valid answers for open-domain ques-
tions, Min et al. (2020b) proposed a new bench-
mark called AMBIGQA where questions are anno-
tated with as many answers as possible. In this new
task, the passage reranker becomes more vital in
the rerank-then-read framework, particularly when
only a few passages are allowed to feed a large
reader due to memory constraints. This is because
the reranker has to ensure that top-ranking passages
are highly relevant and also cover diverse answers.
Despite state-of-the-art performance on AMBIGQA
(Min et al., 2021), according to our empirical anal-
ysis, applying the rerank-then-read framework to
open-domain multi-answer QA faces the following
problems: balancing relevance and diversity is non-
trivial for the reranker due to unknown effect on the
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performance of the subsequent reader; when using
a large reader under a fixed memory constraint, the
small reading budget prevents it from making use
of more retrieved evidence that is valuable but fil-
tered out; when using a generative reader to predict
all answers in sequence based on all selected evi-
dence, it learns pathological dependencies among
answers. To address these issues, we propose to
tackle this task with a recall-then-verify framework,
which separates the reasoning process of each an-
swer with a higher level of evidence usage while
also leveraging large models under the same mem-
ory constraint.

Some previous work argued that a reader can be
confused by similar but spurious passages, result-
ing in wrong predictions. Therefore, they proposed
answer rerankers (Wang et al., 2018a,b; Hu et al.,
2019; Iyer et al., 2021) to rerank top predictions
from readers. Our framework is related to answer
reranking but with two main differences. First, a
reader typically aggregates available evidence and
already does a decent job of answer prediction even
without answer reranking; an answer reranker is
introduced to filter out hard false positive predic-
tions from the reader. By contrast, our answer
recaller aims at finding possible answers with high
recall, most of which are invalid. Evidence focused
on each answer is then aggregated and reasoned
about by our answer verifier. It is also possible to
introduce another model analogous to an answer
reranker to filter out false positive predictions from
our answer verifier. Second, answer reranking typ-
ically compares answer candidates to determine
the most valid one, while our answer verifier se-
lects multiple valid answers mainly based on the
soundness of their respective evidence but without
comparisons among answer candidates.

3 Task Formulation

Open-domain multi-answer QA can be formally
defined as follows: given an open-ended question
q, a question answering system is required to make
use of evidence from a large-scale text corpus C
and predict a set of valid answers {a1, a2, ..., an}.
Questions and their corresponding answer sets are
provided for training.
Evaluation To evaluate passage retrieval and
reranking, we adopt the metric MRECALL@k from
(Min et al., 2021), which measures whether the
top-k passages cover at least k distinct answers
(or n answers if the total number of answers n is

less than k). To evaluate question answering per-
formance, we follow (Min et al., 2020b) to use F1
score between gold answers and predicted ones.

4 Rerank-then-Read Framework

In this section, we will briefly introduce the rep-
resentative and state-of-the-art rerank-then-read
pipeline from (Min et al., 2021) for open-domain
multi-answer questions, and provide empirical anal-
ysis of this framework.

4.1 Passage Retrieval

Dense retrieval is widely adopted by open-domain
question answering systems (Min et al., 2020a). A
dense retriever measures relevance of a passage to
a question by computing the dot product of their
semantic vectors encoded by a passage encoder and
a question encoder, respectively. Given a question,
a set of the most relevant passages, denoted as B
(|B| � |C|), is retrieved for subsequent processing.

4.2 Passage Reranker

To improve the quality of evidence, previous work
(Nogueira et al., 2020; Gao et al., 2021) finds it ef-
fective to utilize a passage reranker, which is more
expressive than a passage retriever, to rerank re-
trieved passages, and select the k best ones to feed
a reader for answer generation (k < |B|). With
a fixed memory constraint, there is a trade-off be-
tween the number of selected passages and the size
of the reader. As shown by (Min et al., 2021),
with good reranking, using a larger reader is more
beneficial. To balance relevance and diversity of
evidence, Min et al. (2021) proposed a passage
reranker called JPR for joint modeling of selected
passages. Specifically, they utilized T5-base (Raf-
fel et al., 2020) to encode retrieved passages fol-
lowing (Izacard and Grave, 2021b) and decode the
indices of selected passages autoregressively using
a tree-decoding algorithm. JPR is designed to seek
for passages that cover new answers, while also
having the flexibility to select more passages cov-
ering the same answer, especially when there are
less than k answers for the question.

4.3 Reader

A reader takes as input the top-ranking passages,
and predicts answers. Min et al. (2021) adopted a
generative encoder-decoder reader initialized with
T5-3b, and used the fusion-in-decoder method from
(Izacard and Grave, 2021b) which efficiently ag-
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gregates evidence from multiple passages. Specifi-
cally, each passage is concatenated with the ques-
tion and is encoded independently by the encoder;
the decoder then attends to the representations of
all passages and generates all answers in sequence,
separated by a [SEP] token.

4.4 Empirical Analysis

To analyze performance of the rerank-then-read
framework for open-domain multi-answer ques-
tions, we built a system that resembles the state-
of-the-art pipeline from (Min et al., 2021) but with
two differences2. First, we used the retriever from
(Izacard and Grave, 2021a). Second, instead of us-
ing JPR, we used an oracle passage reranker (OPR):
a passage p is ranked higher than another passage
p′ if and only if 1) p covers some answer while
p′ covers none 2) or both p and p′ cover or fail
to cover some answer but p has a higher retrieval
score. Following (Min et al., 2021), we retrieved
|B|=100 Wikipedia passages, k=10 of which were
selected by the reranker. Table 2 shows model per-
formance on a representative multi-answer dataset
called AMBIGQA (Min et al., 2020b). Compared
with JPR, OPR is better in terms of reranking, with
similar question answering results3.

Model
Reranking QA

MRECALL@5 MRECALL@10 F1
JPR 64.8/45.2 67.1/48.2 48.5/37.6
OPR 67.7/46.5 70.3/51.2 48.4/37.0

Table 2: Reranking results and Question Answering re-
sults on the dev set of AMBIGQA using JPR and OPR.
The two numbers in each cell are results on all ques-
tions and questions with multiple answers, respectively.

Though 3,670 diverse gold answers are covered
by OPR on the dev set, the reader predicts only
1,554 of them. Our empirical analysis and findings
are detailed as follows.

(1) To leverage a large reader under a fixed mem-
ory constraint, a reranker should select only a few
highly-relevant passages to cover diverse answers,
while balancing relevance and diversity is non-
trivial. As shown by Figure 1a (bottom), the num-

2Code and models from (Min et al., 2021) were not pub-
licly available in the period of this work.

3With the oracle knowledge of whether a passage contains
a gold answer during reranking, OPR is probably still far from
being a perfect reranker. Notably, we are not striving for a
better rerank-then-read pipeline for multi-answer questions,
but use OPR as a representative case to analyze the problems
a rerank-then-read pipeline may face.
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Figure 1: Analysis of how well OPR (the reranker of
a rerank-then-read pipeline) balances relevance and di-
versity on questions with multiple answers in the dev
set of AMBIGQA. The number of retrieved passages is
|B|=100, and the number of passages selected by the
reranker is k=10. Figure (a) shows the ratio of answers
with different numbers of supporting passages selected,
the top half of which is for gold answers missed (top)
by the reader and the bottom half is for predicted ones.
Figure (b) shows the ratio of retrieved supporting pas-
sages that are eventually used by the reader (or the ver-
ifier in our framework).

ber of selected supporting passages4 of predicted
gold answers has a widespread distribution. There
may be cases where redundant false positive evi-
dence is selected and can be safely replaced with
passages that cover other gold answers. However,
it is non-trivial for the reranker to know beforehand
whether a passage is redundant, and how many or
which supporting passages of an answer are strong
enough to convince the reader.

(2) Multiple answers sharing a small reading
budget prevents a reader from using more evidence
that may be valuable but is filtered out by the
reranker. Due to the shared reading budget, it is
inevitable that some answers are distributed with
less supporting passages. As shown by Figure 1a,
a gold answer covered by OPR but missed by the
reader generally has significantly less supporting
passages fed to the reader (3.13 on average) than
a predicted gold answer (5.08 on average), but not
because of lacking available evidence. There is
more evidence in retrieved passages for missed an-
swers but filtered out by the reranker. As shown by
Figure 1b, OPR has a much lower level of evidence
usage for missed answers.

(3) As the reader predicts answers all at once
conditioned on all selected passages, whether a
valid answer will be predicted also pathologically
depends on evidence of some other valid answer(s),
which partly accounted for the large number of

4We abuse the use of supporting passages of an answer to
refer to passages that cover the answer.
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Figure 2: The recall-then-verify framework we propose to answer open-domain multi-answer questions. We first
use the answer recaller to guess possible answers with high recall, the evidence aggregator then aggregates re-
trieved evidence for each candidate, and finally, the answer verifier verifies each candidate based on its aggregated
evidence. As the reasoning process of each answer is separated, and thanks to candidate-aware evidence aggrega-
tion, we can have a high level of evidence usage with a large verifier under a limited memory constraint.
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Figure 3: Analysis of the pathological dependencies
among answers learned by the reader (of a rerank-then-
read pipeline) on the dev set of AMBIGQA. The hor-
izontal axis is the number of diverse answers covered
by OPR. The left axis shows the ratio of questions for
which the reader recovers some originally missed gold
answer after adversarially removing the supporting pas-
sages of some originally predicted gold answer.

gold answers missed by the reader. For verifica-
tion, we attacked OPR’s reader on the dev set of
AMBIGQA as follows: a question is a target if and
only if 1) it has a gold answer covered by OPR
but missed by the reader 2) and it has a predicted
gold answer whose supporting passages cover no
other gold answer; a successful attack on a targeted
question means that a missed answer is recovered
after removing a subset of supporting passages of
some predicted answer5 without removing any sup-
porting passage of the other gold answers.

There are 179 targeted questions; for 43.6% of
them, we successfully recovered at least one missed
gold answer. Figure 3 shows the success rate break-
down on the number of answers covered by the
reader’s input, indicating that predictions tend to
be brittle when the reader is fed with many diverse
supporting passages.

One possible explanation of the pathological de-
pendencies is that the reader implicitly compares

5Removed passages were replaced with the same number
of top-ranking passages that cover no gold answer, so that the
number of passages fed to the reader remained unchanged.

the validity of answer candidates and predicts the
most likely ones. However, for 40.0% of success-
fully attacked questions, according to OPR, sup-
porting passages of recovered missed answers are
more relevant than those removed passages of pre-
dicted answers. Notably, Min et al. (2020b) also
had a similar observation on another rerank-then-
read pipeline, i.e., it is hard to argue that the pre-
dicted answers are more likely than the missed
ones.

5 Recall-then-Verify Framework

5.1 Overview

To avoid the issues faced by the rerank-then-read
framework, we propose a recall-then-verify frame-
work, which separates the reasoning process of
each answer so that answers (1) can be individ-
ually distributed with maximum supporting pas-
sages allowed on the same hardware (2) and are
predicted mainly based on their own evidence. Fig-
ure 2 shows our framework. Specifically, we first
guess possible answers based on retrieved passages
using an answer recaller, an evidence aggregator
then aggregates evidence for each answer candi-
date, and finally, an answer verifier verifies each
candidate and outputs valid ones.

5.2 Answer Recaller

Our answer recaller, based on T5, is trained to pre-
dict all gold answer(s) in sequence (separated by a
[SEP] token) from each retrieved positive passage
p ∈ B that cover some gold answer(s). We also
train the recaller to predict the “irrelevant” token
given a negative passage so that the recaller can
filter out negative candidates; the number of neg-
atives per positive used for training is denoted as
αneg. The set of answer candidates recalled dur-
ing inference is denoted as A = {â1, â2, ..., âm}.
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Though a passage may not contain strong enough
evidence to support an answer, by exploiting se-
mantic clues in the question and the passage (e.g.,
the answer type), it is sufficient for even a weak
model to achieve high recall. However, this is at the
cost of low precision, which necessitates answer
verification based on more supporting passages.

5.3 Evidence Aggregator

We aggregate evidence for each answer candidate
from retrieved passages, which can be formulated
as a reranking task, i.e., to rerank retrieved passages
according to their relevance to a question-candidate
pair, and select top-ranking ones for answer verifi-
cation. Our evidence aggregator resembles OPR:
for a specific candidate âi, we encode the question-
candidate pair with the retriever’s question encoder;
a passage p is ranked higher than another passage
p′ if and only if 1) p covers âi while p′ does not
2) or both p and p′ cover or fail to cover âi but
the semantic vector of p is closer to that of the
question-candidate pair. We denote the top-k rele-
vant passages of âi as Ei.

5.4 Answer Verifier

Given a candidate âi and its evidence Ei, our an-
swer verifier, based on T5-3b, predicts whether âi
is valid, using the fusion-in-decoder method from
(Izacard and Grave, 2021b). Each passage from Ei
is concatenated with the question and the candidate,
and is encoded independently; the decoder then at-
tends to the representations of all passages and is
trained to produce the tokens “right” or “wrong”
depending on whether the encoded candidate is
valid or not6. During inference, we compute the va-
lidity score of a candidate by taking the normalized
probability assigned to the token “right”:

P (ai is valid) =

exp(logit(“right”|q, âi, Ei))∑
t∈{“right”,“wrong”} exp(logit(t|q, âi, Ei))

(1)

Candidates with their validity scores higher than a
threshold τ will be produced as final predictions.

6 Experiments

6.1 Datasets

We conducted experiments on two multi-answer
QA datasets, whose statistics are shown in Table 3.

6We have tried other verbalizers such as “yes” and “no”,
but found no significant difference.

WEBQSP (Yih et al., 2016) is a semantic parsing
dataset for knowledge base question answering,
where answers are a set of entities in Freebase.
Following (Min et al., 2021), we repurposed this
dataset for textual QA based on Wikipedia7.
AMBIGQA (Min et al., 2020b) originates from NQ
(Kwiatkowski et al., 2019), where questions are an-
notated with equally valid answers from Wikipedia.

Dataset
# Question # Answer

Train Dev Test Avg. Median
WEBQSP 2,752 245 1582 22.6 1.0

AMBIGQA 10,036 2,002 2,004 2.2 2.0

Table 3: Statistics of multi-answer QA datasets. Statis-
tics of answers are computed on the dev sets.

6.2 Baselines

We compare our recall-then-verify system with two
state-of-the-art rerank-then-read systems.
REFUEL (Gao et al., 2021) selects 100 top-ranking
passages from 1,000 retrieved passages, and pre-
dicts answers with a reader based on BARTlarge
(Lewis et al., 2020). It also has a round-trip pre-
diction mechanism, i.e., to generate disambiguated
questions based on predicted answers, which are
re-fed to the reader to recall more answers.
JPR (Min et al., 2021) is a passage reranker which
jointly models selected passages. With improved
reranking performance, Min et al. (2021) selected
only 10 passages from 100 retrieved passages, and
used a reader based on T5-3b which is much larger
and more powerful than REFUEL’s reader, while
requiring no more memory resources than REFUEL.

6.3 Implementation Details

Our retrieval corpus is the English Wikipedia from
12/20/2018. We finetuned the dense retriever from
(Izacard and Grave, 2021a) on each multi-answer
dataset. The answer recaller and the answer verifier
were initialized with T5-3b; both were pre-trained
on NQ and then finetuned on each multi-answer
dataset. αneg was 0.1 when finetuning the recaller.
We retrieved 100 passages for a question, and
verified each candidate with k=10 passages. The
threshold τ for verification was tuned on the dev
set based on the sum of F1 scores on all questions
(F1 (all)) and questions with multiple answers (F1
(Multi)); the best τ on WEBQSP/AMBIGQA are

7Our train/dev split on WEBQSP is different from Min
et al. (2021)’s, as their split was not publicly available in the
period of this work.
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System
WEBQSP AMBIGQA

Dev* Test Dev Test
REFUEL - - 48.3/37.3 42.1/33.3

JPR 53.6/49.5 53.1/47.2 48.5/37.6 43.5/34.2
Ours 55.4/45.4 55.8/48.8 52.1/41.6 46.2/37.1

Table 4: QA results on multi-answer datasets. The two
numbers in each cell are F1 scores on all questions and
questions with multiple answers, respectively. Results
on the dev set of WEBQSP can not be directly com-
pared, as we used a different train/dev split7.

0.8/0.5, respectively. Experiments with different
model choices for the recaller and different
values of αneg, k and τ are shown in Section 6.5.
Please refer to the Appendix for more implementation details.

Memory Constraint: Min et al. (2021) consid-
ered a fixed hardware and trained a reader with
the maximum number of passages. We follow this
memory constraint, under which a reader/verifier
based on T5-3b can encode up to 10 passages each
of length no longer than 360 tokens at a time.

6.4 QA Results

Due to candidate-aware evidence aggregation and
a fixed sufficient number of passages distributed
to each candidate, our recall-then-verify frame-
work can make use of most retrieved support-
ing passages (see our improvements over OPR
in Figure 1b). With a higher level of evidence
usage, our recall-then-verify system outperforms
state-of-the-art rerank-then-read baselines on both
multi-answer datasets, which is shown by Table
4. Though focused on multi-answer questions, our
framework is also applicable to single-answer sce-
nario and achieves state-of-the-art results on NQ.
Please refer to the Appendix for more details.

6.5 Ablation Study

In this section, we present ablation studies on
AMBIGQA. Please refer to the Appendix for results
on WEBQSP, which lead to similar conclusions.

6.5.1 Answer Recalling
Model Choices for the Answer Recaller As
shown by Table 5, though T5-base is commonly
recognized as a much weaker model than T5-3b,
a recaller based on T5-base can achieve a high
coverage of gold answers, leading to competitive
end-to-end performance on the test set.
Necessity of Verification To investigate whether
the recaller has the potential to tackle multi-answer
questions alone, we tuned the precision of the re-

Recaller Verifier Dev Test
T5 αneg τ |A| # Hit Recall Precision F1 F1
3b 10 - 2.2 2068/1237 54.4/39.0 39.6/38.3 41.1/34.3 -
3b 5 - 3.3 2206/1328 56.8/41.7 36.6/36.5 39.7/34.7 -
3b 1 - 7.2 2714/1690 65.7/50.9 22.2/22.7 29.7/28.2 -
3b 0 - 51.2 3364/2211 73.5/61.9 3.8/4.6 6.8/8.2 -
3b 0.1 - 28.7 3288/2141 72.6/60.5 6.3/7.5 10.9/12.7 -

base 0.1 - 48.4 3156/2056 70.0/57.9 3.3/4.1 6.0/7.5 -
3b 0.1 0.5 28.7 2046/1184 55.2/37.8 57.7/56.4 52.1/41.6 46.2/37.1

base 0.1 0.6 48.4 2051/1181 54.8/37.6 55.4/54.3 50.8/40.8 45.8/37.0

Table 5: Performance of recallers on AMBIGQA,
trained with different models and αneg . The recaller
was paired with a verifier only in the last two rows
which show end-to-end QA results. # Hit is the number
of distinct gold answers verified or recalled, depending
on whether the verifier is used or not.

caller by varying αneg. As shown in Table 5, with
increased αneg, the recaller learns to recall answers
more precisely but still significantly underperforms
the overall recall-then-verify system. It is likely
that the recaller is trained on false positive pas-
sages, which may mislead the recaller to be over-
conservative in filtering out hard negative passages.
By contrast, using more evidence for verification is
less likely to miss true positive evidence if there is
any for a candidate, thus not prone to mislead the
verifier.
Reducing Answer Candidates Though only us-
ing our recaller for multi-answer QA falls short, the
recaller can be trained to shrink down the number
of candidates so that the burden on the verifier can
be reduced. As shown by Table 5, a small value
of αneg helps reduce answer candidates without
significantly lowering recall.

6.5.2 Answer Verification
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Figure 4: Performance on the dev set of AMBIGQA,
with varying k and τ . In Figure (a), results with k=1
are associated with the top and right axes, while the
others are with the bottom and left axes. As τ increases
(τ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}), points of the same
color move from bottom right to top left. In Figure (b),
# Hit is the number of gold answers with their scores
above a threshold. All and Multi denote all questions
and questions with multiple answers, respectively.
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Figure 5: Analysis of how answer verification (k=10)
is affected by the evidence of other answers on the dev
set of AMBIGQA. The horizontal axis is the number of
answers covered by E . The left axis shows the max
and min changes of predicted score of a gold candidate
on average after adversarially removing supporting pas-
sages of some other answer(s) from E . The left and
right graphs are for missed gold candidates (scores <
0.5) and predicted gold candidates (scores ≥ 0.5), re-
spectively. After attacks, scores of 13.0% of missed
candidates and 3.4% of predicted ones increased to
above and decreased to below 0.5, respectively.

Effect of k Figure 4 shows the benefit of using
more evidence for verification. As k increases from
1 to 10, there is a significant boost in F1 scores.
Effect of τ As shown by Figure 4a, the balance be-
tween recall and precision can be controlled by τ :
a lower τ leads to higher recall and may benefit per-
formance on questions with multiple answers. With
k=10, our system outperforms the previous state-of-
the-art system for a wide range of τ . As shown by
Figure 4b, under the best setups (k=10, τ=0.5), our
system predicts 31.7% and 34.1% more gold an-
swers than the system using OPR on all questions
and questions with multiple answers, respectively.
Dependencies among Answers Despite being
candidate-aware, aggregated evidence E can also
include supporting passages of some other gold
answer(s). We therefore investigated how answer
verification is affected by the evidence of the other
gold answers. Specifically, we attacked the verifier
as follows: a question-candidate pair is a target if
and only if 1) the candidate âi is a gold answer and
2) the aggregated evidence Ei includes at least one
supporting passage of some other gold answer(s)
that do not cover âi; we removed an arbitrary subset
of supporting passages of the other gold answer(s)
at a time8 without removing any supporting pas-
sages of âi, and recorded the worst changes of the
predicted validity scores of âi. As shown by Figure
5, the changes are small, indicating that missed
gold candidates with low scores are not mainly
suppressed by some other answer(s), and that pre-
dicted gold candidates with high scores are verified

8Removed passages were replaced with the same number
of top-ranking passages that cover no gold answers.

mainly based on their associated evidence.

6.6 Error Analysis

Missed Gold Answers
Evidence is wrong 24%
Evidence is right and straightforward 76%
Wrong Predictions
Predictions are true negatives 20%
Predictions are superficially-different false negatives 52%
Predictions are unannotated false negatives 28%

Table 6: Analysis of our predictions on the dev set of
AMBIGQA. Examples are shown in Appendix.

Among 3,288 recalled gold answers on the dev
set of AMBIGQA, the answer verifier misses 1,242
of them and outputs 1,323 wrong predictions. We
manually analyzed 50 random samples, 25 of
which are missed gold answers and 25 are wrong
predictions. Table 6 reports our analysis.

For 76% of missed gold answers, our evidence
aggregator actually aggregates straightforward true
positive evidence. Among these missed answers
with straightforward evidence, 58% of them have
validity scores higher than 0.2 but lower than the
threshold 0.5. We attacked the verifier on missed
gold answers with their validity scores below 0.2
as in Section 6.5.2, and found that the maximum
change of predicted scores on average is small
(+0.04), indicating that the low scores can not be
attributed to the negative distraction by the other
gold answer(s). We conjecture that, as it is difficult
even for human annotators to find all valid answers
to an open-domain question (Min et al., 2020b), the
verifier was trained to refute false negative candi-
dates, resulting in unexpected low scores on some
straightforward valid answers.

Notably, 80% of our “wrong” predictions turn
out to be false negatives: 52% of “wrong” pre-
dictions are semantically equivalent to some an-
notated answer but are superficially different (Si
et al., 2021); 28% of “wrong” predictions are unan-
notated false negatives. Therefore, it is likely that
our system is underrated.

6.7 Inference Efficiency
In this section, we analyze the time complexity
of our framework during inference, make com-
parisons with the state-of-the-art rerank-then-read
framework JPR, and show how to reduce the com-
putation cost of a recall-then-verify system.

For convenience, we denote the encoder length
and decoder length as Lp and La, respectively.
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Answer Recalling Evidence Aggregation Answer Verification Overall
T5 αneg Sec/Q |A| Recall Precision k Sec/Q τ Sec/Q Sec/Q F1
3b 0.1 4.88 28.7 72.6/60.5 6.3/7.5 10 0.02 0.5 4.83 9.73 52.1/41.6
3b 0.1 4.88 28.7 72.6/60.5 6.3/7.5 5 0.02 0.5 2.41 7.31 51.9/40.5

base 0.1 0.85 48.4 70.0/57.9 3.3/4.1 10 0.03 0.6 8.56 9.44 50.8/40.8
base 0.7 0.54 16.0 63.5/50.1 9.5/10.3 5 0.01 0.5 1.33 1.88 50.7/38.2

Table 7: QA performance and inference efficiency of our systems with different configurations on the dev set
of AMBIGQA. Sec/Q denotes seconds per question when using a single V100 GPU. Answer verifiers were all
initialized with T5-3b.

Recaller vs. Reranker The time complexity of
answer recalling is O(|B| · (L2

p + La · Lp + L2
a)),

while that of passage reranking is O(|B| · L2
p + k ·

|B| ·Lp+k
2). As encoding dominates computation

cost (whose time complexity is O(|B| · L2
p)), given

the same model size and |B|, the time complexity
of answer recalling and passage reranking is at the
same level.
Verifier vs. Reader The time complexity of an-
swer verification is O(|A| · (k ·L2

p+k ·Lp)), while
that of the reader is O(k · L2

p + La · k · Lp + L2
a).

As the reader decodes a sequence of length La in
an autoregressive way, while the decoding length
of the verifier is only 1, the ratio between the in-
ference time of the verifier and that of the reader
should be much less than |A|.
Evidence Aggregator Evidence aggregation is sig-
nificantly faster than answer recalling and verifi-
cation, as representations of Wikipedia passages
are pre-computed. The time complexity is O(|A| ·
(L2

p + |B| · log k)) where L2
p comes from encoding

a question-candidate pair with the retriever’s ques-
tion encoder, and |B| · log k comes from selecting
the top-k relevant passages for a candidate.

One can adjust the computation cost of a recall-
then-verify system, depending on how much infer-
ence efficiency is valued over precision and recall,
by (1) choosing a recaller model of proper time
complexity9, (2) tuning αneg to adjust the expected
number of candidates |A| needed for verification,
(3) or tuning the number of passages k used for
verification.

Table 7 shows QA performance and inference
efficiency of our systems with different configu-
rations. Replacing T5-3b with T5-base for the re-
caller is significantly faster in answer recalling, but
is much less precise and produces more answer
candidates with the same αneg, which increases the
burden on the verifier and thus may fail to reduce
the overall computation cost if αneg is not raised.

9As shown in Table 5, a smaller and faster answer recaller
is capable of recalling answers with high coverage.

By also increasing αneg and choosing a smaller k,
as shown by the last row of Table 7, the overall
time needed to answer a question on the dev set of
AMBIGQA can be reduced to 1.88 sec on a single
V100 GPU while also obtaining state-of-the-art F1
scores (50.7/38.2). By contrast, the rerank-then-
read system from Min et al. (2021) using a T5-base
JPR (k=10) and a T5-3b reader is estimated to take
1.51 sec per question10 with F1 scores of 48.5/37.6.

7 Conclusion

In this paper, we empirically analyze the prob-
lems of the rerank-then-read framework for open-
domain multi-answer questions, and propose the
recall-then-verify framework, which separates the
reasoning process of each answer so that 1) we
can have a higher level of evidence usage 2) and
predicted answers are mainly based on associated
evidence and are more robust to distraction by ev-
idence of the other gold answer(s), 3) while also
leveraging large models under the same memory
constraint. On two multi-answer datasets, our
framework significantly outperforms rerank-then-
read baselines with new state-of-the-art records.
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Ethical Considerations

To address problems of the rerank-then-read frame-
work for open-domain multi-answer QA, we pro-

10The average inference time of JPR from Min et al. (2021)
is independent of its parameters given a fixed number of en-
coded tokens and a fixed decoder length, which can be esti-
mated with a randomly initialized JPR. The average inference
time of JPR’s reader was estimated with OPR’s reader.
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pose a recall-then-verify framework that will hope-
fully benefit information-seeking users with an en-
hanced ability of comprehensive exploitation of
evidence from a large-scale corpus. As our pre-
dictions are verified with textual knowledge, our
system itself would not raise new significant ethical
concerns. All the datasets as well as the retrieval
corpus in our experiments have been widely used
for research purposes, and to our knowledge, do
not have any attached privacy and ethical issues.
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A Implementation Details

A.1 Retriever

Our retrieval corpus is the English Wikipedia from
12/20/2018, where articles are split into 100-word
passages. Both OPR and our recall-then-verify
system share the same passage retriever, which was
initialized with the checkpoint released by (Izacard
and Grave, 2021a) and was finetuned on each multi-
answer dataset following DPR (Karpukhin et al.,
2020). Specifically, for each question, we retrieved
100 passages with Izacard and Grave (2021a)’s
checkpoint; for each gold answer ai, we treated
top-6 retrieved passages covering ai as positives,
and top-30 retrieved passages covering no gold
answer as hard negatives. During finetuning, batch
size was set to 128; each question in a batch was
paired with one random positive passage and two
random hard negatives.

|B| Retriever WEBQSP (Test) AMBIGQA (Dev)

5
DPR+ 57.0/38.9 55.2/36.3
Ours 56.1/37.7 53.2/28.9

10
DPR+ 59.0/38.6 59.3/39.6
Ours 57.8/35.9 60.0/37.7

100 Ours 68.0/47.8 73.6/57.6

Table 8: Retrieval results in terms of MRECALL. DPR+

is the retriever of JPR (Min et al., 2021). We only
report results on the test set of WEBQSP and the dev
set of AMBIGQA because Min et al. (2021) used a dif-
ferent train/dev split on WEBQSP and the test set of
AMBIGQA is hidden.

Table 8 shows the performance of our retriever.
Our retriever underperforms DPR+, the retriever of
JPR (Min et al., 2021), in terms of MRECALL@5
and MRECALL@10. As DPR+ has not been re-
leased, it is unknown whether DPR+ still covers
more gold answers than our retriever when retriev-
ing 100 passages.

A.2 Answer Recaller & Answer Verifier

Our answer recallers used an encoder length of 240
and a decoder length of 40; they were first pre-
trained on NQ for 10 epochs and then finetuned on
WEBQSP/AMBIGQA for 80/20 epochs with early
stopping. Batch size was set to 320. We trained
the recallers to decode gold answers covered by
a given positive passage (following the order they
appear in the passage) and output the “irrelevant”
token given a negative passage. Our best system
adopts the recaller trained with αneg=0.1 because
compared with αneg=0, the recaller trained with
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αneg=0.1 shrinks down nearly half of answer can-
didates without a significant drop in recall.

Our answer verifiers used an encoder length
of 280; they were first pre-trained on NQ for 3
epochs and then finetuned on WEBQSP/AMBIGQA
for 30/10 epochs with early stopping. Batch
size was set to 320 for k=1 and set to 64 for
k ∈ {5, 10}. The number of invalid answers used
for training was set to 10 times the number of
valid answers. The best threshold τ was chosen
from {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} based on F1
scores on the dev set.

We used a flat learning rate of 1e-5 with 500
warm-up steps. All experiments were conducted
on a single machine with eight V100 GPUs.

B Experiments

B.1 Single-Answer QA Result

System k T5 Dev Test
(Izacard and Grave, 2021a) 100 large 51.9 53.7

JPR 10 3b 50.4 54.5
Ours 10 3b 52.8 54.8

Table 9: Exact match scores of different systems on
the single-answer dataset NQ. The column T5 shows
the size of the readers of rerank-then-read systems and
the size of the verifier of our recall-then-verify system.
Izacard and Grave (2021a) adopted the rerank-then-
read framework and used significantly more memory
resources for training than JPR and our system.

Though our framework focuses on multi-answer
questions, we also experimented on NQ to demon-
strate that our framework is applicable to single-
answer scenario without suffering from low pre-
cision. Specifically, for each question, we only
output the candidate with the highest validity score.
As shown by Table 9, we slightly outperform pre-
vious state-of-the-art rerank-then-read systems.

B.2 Ablation Study on WEBQSP

B.2.1 Answer Recalling
Table 10 shows the results of recallers on WEBQSP,
which were trained with different models and αneg.
In summary, a weak model suffices to recall an-
swers with high coverage. Using a large and strong
model for the recaller benefits precision, but it is
still difficult for the recaller alone to answer open-
domain multi-answer questions, which necessitates
answer verification based on more associated evi-
dence. However, an answer recaller can help reduce

Recaller Verifier Dev Test
T5 αneg τ |A| # Hit Recall Precision F1 F1
3b 10 - 4.6 446/337 62.8/51.3 44.3/45.9 46.2/41.5 -
3b 5 - 4.9 452/335 64.4/51.3 44.7/44.5 46.5/39.9 -
3b 1 - 7.2 495/379 67.7/55.9 33.5/37.7 38.6/38.3 -
3b 0 - 44.4 669/542 72.5/64.2 8.3/11.4 12.5/16.5 -
3b 0.1 - 23.9 600/476 70.7/60.9 13.5/17.6 18.8/22.4 -

base 0.3 - 28.9 582/460 70.8/59.2 9.5/13.6 14.2/18.3 -
base 0.1 - 40.7 614/494 70.9/61.3 7.1/10.8 11.0/15.3 -
3b 0.1 0.8 23.9 414/309 58.7/44.6 61.0/61.0 55.4/45.4 55.8/48.8

base 0.1 0.8 40.7 425/326 57.9/45.6 59.9/63.5 54.2/46.9 54.5/48.4

Table 10: Performance of recallers on WEBQSP,
trained with different models and αneg . The recaller
was paired with a verifier only in the last two rows
which show end-to-end QA results.

the burden on the answer verifier by conservatively
filtering out negative candidates.

Though a recall-then-verify system with a re-
caller based on T5-base significantly outperforms
JPR on WEBQSP, it lags behind the system with a
T5-3b recaller on F1 (all) on the test set. We con-
jecture that this is because with the same αneg=0.1,
a T5-base recaller obtains lower recall (69.5/61.4)
than a T5-3b recaller (72.1/63.3); a T5-base recaller
may need an even lower value of αneg to obtain a
higher coverage of gold answers.

B.2.2 Answer Verification
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Figure 6: Performance of answer verification (k=10)
on WEBQSP. # Hit is the number of gold answers with
their scores above a threshold.

As shown by Figure 6, F1 scores on WEBQSP
are insensitive to a wide range of τ , while a lower
τ is helpful to predict more gold answers.

C Error Analysis

Table 11 reports our error analysis on the dev set
of AMBIGQA.
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Missed Gold Answers > Evidence is wrong (24%)
Question: Who does brooke davis have a baby with?
Gold Answers: Julian Baker
Missed Gold Answer: Julian Baker
Evidence: Brooke Davis is happier than ever; preparing to marry Julian Baker ... The Scott family are
expecting their second child and Haley feels the baby will be a girl ...
Explanation: Evidence is insufficient to infer Brooke Davis has a baby with Julian Baker.
Missed Gold Answers > Evidence is right and straightforward (76%)
Question: What’s the most points scored in an nba game?
Gold Answers: 370; 153; 162; 100; 186
Missed Gold Answer: 162
Evidence: The 1971-72 team holds franchise records in wins (69), most points scored, and largest
margin of victory; both of the latter came in the team’s 63 point win versus Golden State (162-99).
Wrong Predictions > Predictions are true negatives (20%)
Question: When did the song lost boy come out?
Gold Answers: February 12, 2015; January 2015; 4 December 2015; May 9, 2016; 2015; 2017;
November 17, 2017
Prediction: 20 December 2011
Evidence: “The Lost Boy” was written by Holden in 2011 ... Holden recorded it and released as a
charity single on 20 December 2011 ...
Explanation: “Lost Boy” and “The Lost Boy” are different songs.
Wrong Predictions > Predictions are superficially-different false negatives (52%)
Question: How much sports are there in the winter olympics?
Gold Answers: fifteen; 86; 98; seven; 102
Prediction: 15
Evidence: ... the Winter Olympics programme features 15 sports.
Wrong Predictions > Predictions are unannotated false negatives (28%)
Question: How much did it cost rio to host the olympics?
Gold Answers: US$11.6 billion; US$13,100,000,000
Prediction: USD 4.6 billion
Evidence: Indirect capital costs were “not” included, such as for road ... Rio Olympics’ cost of USD
4.6 billion compares with costs of USD 40-44 billion for Beijing 2008 ...

Table 11: Analysis of predictions from our answer verifier. We display all annotated forms of gold answers, which
are separated with semicolons.
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