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Abstract

In this study, we investigate robustness against
covariate drift in spoken language understand-
ing (SLU). Covariate drift can occur in SLU
when there is a drift between training and test-
ing regarding what users request or how they
request it. To study this we propose a method
that exploits natural variations in data to create
a covariate drift in SLU datasets. Experiments
show that a state-of-the-art BERT-based model
suffers performance loss under this drift. To
mitigate the performance loss, we investigate
distributionally robust optimization (DRO) for
finetuning BERT-based models. We discuss
some recent DRO methods, propose two new
variants and empirically show that DRO im-
proves robustness under drift.

1 Introduction

A common assumption in machine learning is that
training data and test data are independent and iden-
tically distributed (i.i.d.). Unfortunately, this may
not hold in practice and the test distribution might
have drifted from the training distribution which
can lead to a significant drop of performance in real-
world applications (Moreno-Torres et al., 2012).

Consider spoken language understanding (SLU),
i.e., the task of mapping an utterance to a ma-
chine readable semantic interpretation, which is
commonly used in voice controlled devices like
Alexa, Siri or Google Assistant. Distributional
drifts can be caused by seasonal and non-seasonal
factors. For example, festive holidays can lead
to many requests outside the daily routine. New
users might use an uncommon phrasing to express
their intent or they might request an uncommon
song to be played. Such drifts in the input distribu-
tion are referred to as covariate drift. When users’
requests fail to be recognized by the device they
might rephrase their intent until they succeed, es-
sentially adapting to the SLU model’s distribution.
This means that, even when new training samples

are drawn from new user utterances, the dominance
of the old distribution already present in the SLU
model is reinforced. Fine-tuned pre-trained lan-
guage models (PLM), such as BERT (Devlin et al.,
2019) yield strong performance on SLU bench-
marks (Chen et al., 2019). Yet, it has been observed
that also PLMs are vulnerable to drifts, and there is
a high interest in understanding the robustness of
PLMs (Oren et al., 2020a; McCoy et al., 2019; Tu
et al., 2020; Cao et al., 2020).

The goals of this study are to investigate the
impact of covariate drift on BERT’s performance,
and to experimentally investigate distributionally
robust optimization (DRO) for finetuning BERT.
While we focus on sequence classification for SLU,
i.e., intent classification (IC) and slot filling (SF),
we expect the insights of this study to be applicable
also to other sequence classification tasks.

To study the impact of covariate drift on model
robustness, we require a dataset with known proper-
ties of the drift. However, real data for this setting
is not publicly available. Therefore, we devised a
method to create a train/test split with a controlled
drift for sequence labeling data, which we call SE-
QDRIFT. Roughly speaking, SEQDRIFT creates
clusters of examples based on the example’s to-
kens and sequence labels. Then those clusters are
used to create a new train/test split while leaving
the label distribution intact. Notably, SEQDRIFT

does not artificially alter the utterances and only
exploits natural lexical variations in the data in a
non-adversarial manner. Our experiments on pub-
licly available SLU datasets repartitioned with SE-
QDRIFT showed that a state-of-the-art BERT-based
model for SLU (Chen et al., 2019) trained with
standard optimization suffers up to 5% absolute
performance loss.

Currently, it is an open question which range of
measures are helpful to improve the generalization
under drift. In this study, we investigated distri-
butionally robust optimization (DRO), which has
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recently gained interest in NLP for overparame-
terized models (Oren et al., 2019; Sagawa et al.,
2020; Liu et al., 2021; Michel et al., 2021). It is an
optimization concept which assumes that the train-
ing data is a mixture of distributions, e.g., different
user demographics. The objective is to be optimal
under each distribution. For example, the methods
proposed by Oren et al. (2019) and Sagawa et al.
(2020) assume knowledge about groups of training
instances —such as topics or ethnic origin— that
can be used by the optimization. Roughly speak-
ing, they propose to compute the loss across groups
instead across individual instances. However, such
group knowledge might not be available and there
are other methods which do not require such prior
knowledge. TOPK (Levy et al., 2020; Kawaguchi
and Lu, 2020), for example, simply uses the top-k
largest losses in a batch and was shown to obtain
robust models.

We performed an extensive experimental analy-
sis to investigate the usefulness of several DRO
methods across different scenarios. Most stud-
ies only evaluate DRO methods in one setting
with in-distribution validation data and one drift
type per dataset. To achieve a broader insight
into the usefulness of the investigated methods
we evaluated them in 8 scenarios per dataset, i.e.,
for different types of drift, or model selection
with in-distribution and out-of-distribution vali-
dation data. Additionally, we propose an intu-
itive variant of TOPK, namely TOPK-GROUP or
TOPK-AUTOENCODER to investigate if prior group
knowledge or latent group knowledge could im-
prove TOPK. We found that TOPK, TOPK-GROUP

and TOPK-AUTOENCODER can significantly im-
prove robustness in many scenarios, where TOPK

is more reliable in terms of significant improve-
ment, while TOPK-AUTOENCODER can be better
in terms of relative improvement.

2 Background

In this section, we provide a brief background to
spoken language understanding. Subsequently, we
discuss common categorizations of dataset drifts,
empirical analyses of drifts and then describe dis-
tributionally robust optimization.

2.1 Spoken Language Understanding

In this study, we focus on SLU for single-turn ut-
terances and non-nested intents. Parsing utterances
into API calls is broadly either done by task ori-

ented semantic parsing (TOP), or as intent classi-
fication (IC) and slot filling (SF). IC is the task
to classify an utterance into user intents, such as
PlayMusic, FindBook or GetWeather. Meanwhile,
SF is a sequence tagging task to identify spans of
tokens that represent the intent’s slot fillers, such
as ArtistName, AlbumName or TrackNumber. In
state-of-the-art approaches, IC and SF are typically
modeled jointly using deep neural networks (Chen
et al., 2019).

2.2 Distributional Drifts

A common assumption in machine learning is that
the training and test data are independent and
identically distributed (i.i.d.) and that the distri-
butions are the same between training and test, i.e.
Ptrain(x, y) = Ptest(x, y). Unfortunately, in prac-
tice, the test data is often out of distribution (o.o.d.),
i.e. Ptrain(x, y) 6= Ptest(x, y). This can be caused
by sampling bias, such that subpopulations are not
equally represented in the samples of the two dis-
tributions. As this phenomenon is often caused
by time-varying covariates, i.e., seasonal and non-
seasonal changes, this phenomenon is referred to
as a drift. However, this can be a general mismatch
between the sampled subpopulations, which can
be of geographic or demographic type, or they can
be topics or domains. Drifts can also be caused
by noise or automatic training data generation, in
which filtering heuristics introduce a systematic
issue, or by adversaries that exploit weaknesses of
a specific model or model class.

Distributional drifts can be categorized
into (Moreno-Torres et al., 2012): concept drift,
i.e., when the meaning changes, prior probability
drift and covariate drift.

Covariate drift. When Ptrain(x) 6= Ptest(x),
then there is a drift in the input distribution, and
when the concept P (y|x) does not change be-
tween training and testing, this is referred to as
covariate drift. The challenge is that the pop-
ulation and its subpopulations are unknown be-
cause only samples are observed and thus P (x|y)
cannot be perfectly learned. For covariate drift
a model has to generalize to samples from sub-
populations that are almost unseen, e.g., a spam
classifier should generalize to a new spam cam-
paign (x, y)test = ( word_in_email=“cheap”,
is_spam=True) while only observing (x, y)train=
(word_in_email=“money”, is_spam=True). One of
the conjectures for transfer learning using PLMs is
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that task finetuning PLMs can generalize to inputs
that are semantically similar to training instances.
One reason for a lack of robustness to covariate
drift is when models overfit on patterns between
the input and the desired labels, e.g., when they
would learn that only “cheap” is a predictor for
spam. Another reason can be spurious correlations
between patterns in the input and the label. Sagawa
et al. (2020); Tu et al. (2020) showed this for en-
tailment prediction. They grouped instances by a
certain input attribute (does or does not contain
negation) and target labels (is or is not entailment).
The attribute did not have any direct relation to
the label. Then they partitioned the data in such a
way that there was a correlation between the polar-
ity of the attribute and the label in the training
data and an inverse correlation in the test data:
Dtrain = [(negation = +, entailment = −),
(negation = −, entailment = +)] and Dtest =
[(negation=+, entailment=+)], (negation=
−, entailment=−)]. They showed that models
learn this correlation instead of the semantics of
the actual task and then fail on test instances.

2.3 Empirical Analyses of Drifts
Currently, there is a rising interest to investigate
distributional drifts in various domains (Tu et al.,
2020; Sagawa et al., 2020; Koh et al., 2021; Dunn
et al., 2020; Shankar et al., 2019; Oren et al.,
2020b), most prominently in Computer Vision
(CV), but also in NLP. To study distributional drifts,
researchers need datasets with a controlled drift be-
tween training and test data. This can be broadly
achieved in two ways:

Synthetic methods. A dataset drift is created by
corrupting the input features with synthetic noise,
for example, adding pixel noise (Goodfellow et al.,
2015), perturbing the input with generative models
(Dunn et al., 2020) or perturbing characters and
words (Cao et al., 2020). It has been observed
that robustness against synthetic noise does not
imply robustness against semantically meaningful
perturbations (Koh et al., 2021; Dunn et al., 2020).

Natural variations. Another option is to exploit
natural variations, for example, using video frames
for which a model’s object prediction flips between
adjacent frames (Shankar et al., 2019). Koh et al.
(2021) collected a large benchmark for naturally
occuring drifts in CV and NLP, e.g., user demo-
graphics for toxicity detection in online comments.
Søgaard et al. (2021) investigated the difference of

model performance comparing random splits with
heuristics like splitting the data based on sentence
length or by maximizing the divergence of the to-
ken feature vectors of the train and test split. In
this work, we exploit natural variations in the data
to create a drift in a non-adversarial manner. Our
conjecture is that this setting is a good proxy to a
realistic evaluation scenario.

2.4 Distributionally Robust Optimization
Robustness. The robustness of a machine learn-
ing model is the property that characterizes how
effective the model is while being tested on a new
dataset. In this paper, robustness is formally de-
fined as follows. Let D be a dataset split into
Dtrain, Dvalid, Dtest and let E be a performance
measure E : θ × D → R (w.l.o.g. greater is
better). We assume that there is a covariate drift
between Dtrain and Dtest. Given two models A
and B with parameters θA, θB ∈ Θ estimated
on Dtrain. We call a model B more robust than
model A when E(θB, Dtest) > E(θA, Dtest) and
E(θB, Dvalid)−E(θB, Dtest) < E(θA, Dvalid)−
E(θA, Dtest)

Empirical Risk Minimization (ERM). Com-
monly used optimization algorithms assume that
all examples are from the same population. This
assumption stems from ERM’s optimization ob-
jective which treats each example in Dtrain ∼ P
with equal importance, i.e., θ̂ = infθEP [l(x, y; θ)].
This optimization may have a negative impact on
model robustness. For example, Tu et al. (2020)
found that using ERM for finetuning PLMs learns
spurious correlations even in the presence of a few
helpful counter examples.

Distributionally Robust Optimization (DRO).
DRO is based on the assumption that Dtrain con-
sists of samples from many subpopulations, i.e.,
distributions Q from an uncertainty set U(x, y).
The objective in DRO is then to optimize the
parameters such that they are optimal under the
worst case distribution in U(x, y), i.e., θ̂ =
infθsupQEQ[l(x, y; θ)]. DRO is effective when
the proportions of the distributions Q are highly
skewed in Dtrain. For example, this can help to
avoid learning spurious correlations, because even
very few counter examples in the data are amplified.
The challenge in applying the DRO concept is that
the subpopulations are not observable and U(x, y)
has to be modeled by some prior knowledge about
the data.
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O B-SONG O B-ARTIST I-ARTIST O O B-PLAYLIST O
add song by too poetic to my piano-ballads playlist

Table 1: Example for the slot value drift feature representation. Only the values in black can be considered for the
n-gram feature representation and the grey values are ignored.

O B-SONG O B-ARTIST I-ARTIST O O B-PLAYLIST O
add song by too poetic to my piano-ballads playlist

Table 2: Example for the slot context drift feature representation. Only the values in black are used for the n-gram
feature representation and the gray values are ignored.

3 The SEQDRIFT Method to create
Covariate Drift Benchmarks

Our goal is to study the impact of covariate drift on
model performance. Therefore, we need a bench-
mark with controlled drift, but currently there are
no publicly available SLU benchmarks in which
real drifts can be studied. As motivated in Sec-
tion 2.3, we do not want to employ synthetic noise,
i.e., our goal is to design a method that exploits nat-
ural variations in the data. Moreover, the method
should not be adversarial, i.e., not designed or op-
timized to target a specific model or model class.
Instead, we target two semantic drifts that might
occur in real data due to: how users express their
intent, and what users request.

We conjecture that it is possible to capture how
users express themselves by creating clusters of
utterances with similar slot contexts. To capture
what users request could be achieved by clusters of
utterances with similar slot values. A drift can then
be created by partitioning the data based on those
clusters into training and testing. We avoid creat-
ing a mismatch of the label distributions between
training and testing. If a mismatch would occur, it
would not be possible to derive conclusions about
covariate drift from changes in performance be-
cause the shift in the label distribution also leads
to changes in the measured performance. In the
following, we describe our approach in detail.

3.1 Overview

The high-level overview for creating a drift dataset
version is as follows: (i) Join all splits from the
original data. (ii) Transform examples into feature
representations. (iii) Use spectral clustering to ob-
tainK clusters based on the feature representations.
(iv) Create the test split based on the clusters by
sampling clusters instead of sampling examples.

3.2 Feature representation for clustering

We propose two variants of feature representations
to capture different drift types.

Slot value drift To cluster examples by “what
users request" we chose the feature representation
of slot value n-grams. Table 1 shows an example
in which only the slot values (the non-gray cells)
are used to generate n-grams for an utterance, e.g.
“song” or “too poetic”. The expected effect
of splitting the data based on clusters of examples
using this representation is that the training split is
missing certain slot values, and thus we encounter
unseen artists during testing.

Slot context drift The feature representation to
cluster training examples by “how users express an
intent or slot" are n-grams of slot labels and the
tokens around them. For example, using only the
non-gray cells in Table 2 to generate n-grams would
yield “add B-SONG by B-ARTIST” or “to
my B-PLAYLIST” as features to represent the
example. The expected effect of this drift is that
the test data contains phrases which are not seen
during training.

3.3 Creating new train/valid/test splits

Now, using the feature representation for either
the slot value drift or slot context drift, we use
spectral clustering to createK clusters and proceed
to create the data splits.

Test split. First the test split is created by sam-
pling clusters and all the clusters’ examples are
added to the test split. To avoid a mismatch of
the label distribution between training and the new
test split, the method uses a projected label count
per split to decide whether a cluster can be used.
For example, let’s assume we defined a 5% test
split percentage and there are 1000 examples with
the intent-slot label PLAYMUSIC-ARTIST. Then
the test split should have ≈ 50 examples with the
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intent-slot label PLAYMUSIC-ARTIST. Hence, a
cluster which contains 70 examples with the intent-
slot label PLAYMUSIC-ARTIST cannot be used
for the test split because it would exceed the pro-
jected label count. Thus, when a cluster is sampled
all of its examples are added to the test split if they
do not disturb the projected label count. This is
repeated until all clusters have been sampled once
and have been added to the test split or not. When
the test split does not match the projected label
count, it is filled using random examples from clus-
ters that have not been used for test so far. These
examples do not count into the controlled drift.

Train and validation split. The training and val-
idation splits are created by sampling from the re-
maining examples.

3.4 Drift dataset variants

We also considered the following variations of the
proposed algorithm to measure various effects.

O.O.D. validation One variation is that the val-
idation data could be o.o.d. instead of distributed
like the training data. This is a hypothetical setting
in which we have access to o.o.d. data for valida-
tion and can observe to what degree hyperparam-
eter tuning and model selection do factor into the
drift effect. To achieve this we create the validation
data in the same way as the test data, but validation
and test do not share drift clusters.

Full drift and partial drift In the default behav-
ior all the examples of a cluster are shifted into
the test split which we call a full drift. However,
a natural question is what happens when a small
percentage of a test cluster leaks into training. We
call this setting a partial drift.

4 DRO for Overparameterized Models

In the experiments in Section 5 we will show that
using ERM optimization on the SEQDRIFT parti-
tioned datasets is not robust. There might be many
measures to mitigate this effect, and the best solu-
tion will most likely consist of a mix of methods.
One candidate is DRO that has seen a rising inter-
est to be applied to overparameterized models. In
the following, we first briefly discuss the setting of
finetuning a pretrained language model (PLM), and
subsequently we describe existing and proposed
DRO methods.

4.1 Finetuning Pretrained Language Models

In our setup, a pretrained language model M con-
sists of a pretrained encoder ENC, and one (or
more) task classifier head(s) Ctask. Let X be a
batch of inputs of size b, then the hidden represen-
tations of M are the output of the encoder Xenc =
ENC(X). For example, in our study we denote
the averaged hidden token representations of size
d after the last layer of BERT as Xenc ∈ Rb×d.
To finetune M for a new task, the parameters of
the encoder and the task classifier heads are opti-
mized with a loss function Ltask to obtain the task
batch loss ltask = Ltask(Ctask, Xenc) ∈ Rb. The
following methods differ mainly in the way they
manipulate the task batch loss ltask.

4.2 Existing DRO methods

The following DRO methods are by no means ex-
haustive. They represent either methods proposed
so far in NLP or have a desirable property, e.g.,
being simple or conceptually interesting. The main
differences between the methods is that they ei-
ther use or do not use group knowledge in their
objective. Those models that do require knowledge
about groups in the data will use the clusters cre-
ated by the SEQDRIFT algorithm. However, using
the SEQDRIFT clusters is somewhat artificial be-
cause this is perfect information. Therefore, we are
especially interested in methods that do not require
group knowledge.

TOPIC-CVAR This method was proposed by
Oren et al. (2019) for language modeling. They
use a topic model to obtain a distribution over top-
ics for each sentence to model the uncertainty set.
The core idea is to accumulate the losses for each
topic over the course of training. In each update a
subset of losses in ltask is selected, i.e., the losses
of those batch items that are assigned to the topic
that currently lies in the upper α percentile of accu-
mulated losses.

GROUP-DRO This method was proposed by
Sagawa et al. (2020) for data where groups are
known such that each example is assigned to one
group. Similar to TOPIC-CVAR their method keeps
statistics of the accumulated losses, but for groups
rather than for topics. In GROUP-DRO the batch
losses in ltask are first averaged per group and the
final loss is a weighted average over group losses.
For batch construction their method upsamples
groups reciprocally to their frequency.
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Prec. Adapt. Impl.

TOPK-AE (our) x
TOPK-GROUP (our) x
TOPK x
GROUP-DRO x
TOPIC-CVAR x

Table 3: How the group knowledge is modeled in DRO
methods: precomputed, adaptive, implicit.

TOPK This method does not require group
knowledge and is simple to implement: it sim-
ply computes the loss as an average over the top-k
largest losses in ltask (Levy et al., 2020; Kawaguchi
and Lu, 2020).

4.3 Our proposed variants
We found TOPK to be very effective in initial ex-
periments. By contrast, GROUP-DRO and TOPIC-
CVAR did not perform well in our setting, even
though both have been shown to work well. Thus,
we propose the following TOPK variants:

TOPK-GROUP. If group information is avail-
able, can TOPK be improved by it? Here the idea
is —similar to TOPIC-CVAR and GROUP-DRO—
to use the precomputed SEQDRIFT clusters as
groups and compute the TOPK loss per group. Then
only the largest TOPK group loss is picked, which
has the effect of upsampling “difficult” groups and
downsampling “easy” groups over the course of
training. However, when the precomputed SEQ-
DRIFT clusters are used, this is more an oracle, i.e.,
an upper bound of how much can be inferred from
the training data using perfect information.

TOPK-AUTOENCODER (TOPK-AE). What if
we do not have access to the precomputed clusters?
Could we approximate them using the PLM’s hid-
den representations Xenc? Our idea is to use the
Xenc representations to cluster the b batch items
into c latent groups. The latent groups are then
used in the loss computation like in TOPK-GROUP.
The clustering is obtained from an autoencoder
which is trained on Xenc and is continuously up-
dated during training. Thus, the group assignment
of a training example can change over the course
of training according to the model’s changing hid-
den representations. We investigated hard cluster
assignment TOPK-AE-BIN and soft cluster assign-
ment TOPK-AE-PROB. See Appendix B for all the
details regarding the autoencoder and its training.

Discussion Table 3 compares the different meth-
ods discussed in this study, and shows if the method
relies on precomputed groups or if the groups are
implicit or adaptively inferred during training.

5 Experiments

In this section, we present our experiments to inves-
tigate the following questions: (Q1) Does the stan-
dard optimization ERM suffer a performance loss
under the SEQDRIFT covariate drift? (Q2) How
well can ERM and DRO methods exploit a scarce
signal about the test distribution, i.e., when is DRO
relevant? (Q3) As all optimization methods come
with hyperparameters, how much better could each
method perform with access to o.o.d. validation
data to optimize hyperparameters and perform early
stopping? Would DRO still be better than ERM?
(Q4) Are the DRO methods more robust than ERM

against the SEQDRIFT covariate drift, and which
DRO method is the most effective?

SLU Model. We use the JointBERT model for
SLU (Chen et al., 2019). Two small changes that
we introduce are: (i) an intent loss scaler γ for the
joint tasks loss L = Lslot + γ ∗ Lintent and (2) us-
ing softmax layer instead of CRF for the sequence
tagging classifier. We established the usefulness of
those two changes with a hyperparameter study1.

5.1 SEQDRIFT Datasets

The source datasets for SEQDRIFT are four com-
monly used SLU benchmarks, which are listed in
Table 6. All technical details and settings for SE-
QDRIFT are discussed in Appendix A. Table 5
shows an excerpt from a cluster from the ATIS
dataset and demonstrates how the slot context drift
cluster contains examples with similar phrases, in
this case utterances with the phrase “between
B-from.city and B-to.city”.

Use of datasets. To study robustness it is in-
evitable to look at test performance. Thus, we did
not use all datasets for all stages of experimenta-
tion: Prototyping of SEQDRIFT was only done on
ATIS, and then final experiments with ERM were
done on all four datasets. The prototyping and ini-
tial experiments for the DRO methods were mostly
done on ATIS and a few trials on SNIPS. The final
DRO experiments were conducted on SNIPS and
TOP.

1We found that CRFs did not help and task loss scalers for
good models had a ratio of slot:intent of 100:1.
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train valid test

i.i.d. o.o.d.
size % drift size % drift size % drift size % drift

SNIPS
full

slot value 10,231 0 1,426 0 1,423 25 1,404 66
slot label 10,197 0 1,390 0 1,416 52 1,400 75

partial
slot value 10,238 2 1,412 0 1,415 40 1,419 67
slot label 10,214 2 1,400 0 1,421 59 1,449 79

TOP
full

slot value 16,145 0 2,295 0 2,257 23 2,253 44
slot label 16,131 0 2,227 0 2,251 65 2,341 45

partial
slot value 16,128 2 2,272 0 2,294 26 2,256 45
slot label 15,940 3 2,255 0 2,316 65 2,439 47

Table 4: Statistics for all scenarios for the SEQDRIFT versions of SNIPS and TOP used in the main experiments.

INTENT SLOTS

B-from.city B-to.city
atis_flight show flights between boston and philadelphia

B-from.city B-to.city B-arrive_time
atis_flight what nonstop slights between boston and washington arrive today

B-from.city B-to.city B-depart_time
atis_flight what flights are between boston and atlanta in july

B-from.city B-to.city B-depart_time
atis_flight flights between boston and philadelphia that arrive after 2pm

Table 5: An excerpt from a cluster from the ATIS dataset for the slot context drift.

All dataset scenarios In total we can evaluate a
method in eight different scenarios per dataset, i.e.,
the cross product of

{slot value drift, slot context drift} ×
{partial drift, full drift} ×
{i.i.d. validation, o.o.d. validation}.

Table 4 shows the resulting statistics for the
datasets SNIPS and TOP-NN. The percentage of
examples resulting from a controlled drift in the
test set are 66− 79% for SNIPS and 44− 47% for
TOP. For the scenario with partial drift 2-3% of
the training data split belong to clusters that have
been deliberately shifted into the test split.

Metrics. We use the following metrics: F1 - the
slot F1 metric; ACCURACY - the intent accuracy;
COMBINED-IC-SF - the average of F1 and Accu-
racy.

Hyperparameters. To ensure a fair comparison
of methods in the experiments, we performed a
hyperparameter search with the objective to opti-
mize for COMBINED-IC-SF for each optimization
method for four scenarios {slot value drift, slot

#int. #slot #int.-slot #examp.

ATIS 26 82 389 5871
TOP-NN 18 25 109 29104
MIT 2 18 20 21399
SNIPS 7 39 52 14484

Table 6: Source Datasets for our experiments.
ATIS (Hakkani-Tür et al., 2016), TOP (Gupta et al.,
2018), SNIPS (Coucke et al., 2018), MIT (Liu et al.,
2013). For TOP we only use non-nested intents, which
leaves roughly 70% of the original dataset.

context drift}× {i.i.d. validation, o.o.d. validation}
with partial drift (see Section 3.4). For each set-
ting we ran 8 hyper-parameter optimization steps2,
then picked the two best hyper-parameter settings
and retrained them with a different random seed.
Then we reused the best hyper-parameters for the
full drift. See Appendix C and Table C.9 for the
remaining details about the hyperparameters.

2using Optuna
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(c) Amount of times a method was sig-
nificantly worse or better than ERM on
SNIPS when the validation data is i.i.d.
or o.o.d., i.e. out of 4 scenarios each.

5.2 Results

The reported results for each scenario are always
averaged from four models, i.e., the models ob-
tained with the two best hyperparameter settings
that each have been trained with two random seeds.
We computed significance with p < 0.05 between
models with approximate randomization (Noreen,
1989). Due to the repetition with different random
seeds, this effectively results in a family-wise error
rate of 0.185. In Figures 1b and 1c we count in how
many scenarios a DRO method was significantly
better or worse than ERM. The remaining instances
performed the same as ERM.

(Q1) Does the SEQDRIFT covariate drift lead to
a drop in performance for ERM? In Figure 1a,
it can be observed that ERM’s performance does
drop up to 5% in slot F1 between validation and
test. However, the amount of change varies be-
tween datasets. In most scenarios, slot F1 suffers
a higher drop in performance than intent accu-
racy. Slot context drift yields a higher loss than
the slot value drift, so it seems that it is easier
to generalize to unseen slot values than to unseen
phrases. This makes intuitively sense, e.g., “Please
play New Unknown Artist.” can be recognized
by just knowing the sequence “please play
B-ARTIST I-ARTIST ...”, but it is more
difficult to generalize to a new unseen phrase. See
Appendix D Table 10 for the numerical results.

(Q2) How well can ERM and DRO methods ex-
ploit a scarce signal about the test distribution?
In Section 3.4 we described the partial drift, in

which 2 − 3% of the training data are leaked ex-
amples from test clusters. Thus, during training
there is some information about test clusters that
could be exploited. For ERM, Figure 1a shows
indeed that the partial slot context drift leads to a
smaller drop in performance than the full slot con-
text drift. Thus, we conclude that ERM can exploit
this information.

For DRO, Figure 1b shows that there are less
scenarios with significant improvement from DRO
methods over ERM with a partial drift than with
a full drift (see numerical results Appendix D Ta-
ble 14). It is important to note that all methods
—ERM and DRO— do improve, but ERM improves
more than most of the DRO methods. Only TOPK-
GROUP and TOPK still improve over ERM. Anec-
dotally, in a SEQDRIFT setting in which only 80%
or less of the clusters are drifted into the test split
and the percentage of the drift cluster examples
make up more than 5% of the training data, the
significant improvement of all the DRO methods
vanishes.

(Q3) Does o.o.d. validation data help hyperpa-
rameter optimization and early stopping? In
Figure 1c, we observe that the amount of signifi-
cant improvement over ERM shrinks when the vali-
dation data is o.o.d. and thus contains information
how to perform well for the test split. This affects
hyper-parameter optimization and early stopping
which also helps ERM to obtain a model from the
training data that performs better on the test dis-
tribution. This can serve as an upper bound of
possible improvement that can be derived from the
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Figure 2: Amount of times a method was significantly
worse or better than ERM on SNIPS and TOP out of 16
scenarios.

training data alone. See Appendix D Table 13 for
the detailed numerical results.

(Q4) Are the DRO methods more robust against
the drifts than ERM? Figure 2 shows in how
many scenarios the DRO methods improved signif-
icantly over ERM on the SNIPS and TOP dataset.
TOPK and TOPK-GROUP only improve signifi-
cantly over ERM and do not perform worse. TOPK-
AE-BIN only performs worse one time but oth-
erwise the same or better. The results indicate
that TOPK-based methods do improve robustness.
TOPK-GROUP performs best amongst all methods,
i.e., group information helps TOPK-based methods.
TOPK-AE-BIN performs slightly worse in terms of
significant improvement than TOPK, however, in
terms of average relative improvement over ERM

it is on par or better than TOPK (see Tables 11
and 12 in the Appendix). Yet, the lesser amount
of significant improvement of TOPK-AE-BIN in
comparison to TOPK-GROUP shows that approxi-
mating the group information is difficult. Without
perfect group information a simple method like
TOPK might be the most reliable method to ob-
tain a robust model. See more detailed results in
Appendix D Table 11 and Table 12.

Discussion GROUP-DRO, TOPIC-CVAR and
TOPK-GROUP use the SEQDRIFT clusters in their
optimization. Therefore, these results should be
rather seen as an upper bound of how much can
be inferred from the training data using perfect in-
formation. Still, GROUP-DRO and TOPIC-CVAR

both fail to perform well in this experiment. Note
that both methods had the same amount of budget
for hyper-parameter optimization as other methods.
For GROUP-DRO we used the authors’ published

code3 and also their implementation of TOPIC-
CVAR. Our conjectures about this finding are: (1)
GROUP-DRO and TOPIC-CVAR both have been
proposed and studied for groups that have much
higher lexical variance than the groups in our data.
The groups in our dataset consist by construction
of many examples with similar lexical patterns and
can be of small size, i.e., as little as 10 examples.
This might explain why they seem to overfit heav-
ily. (2) Another difference to our methods is that
our proposed methods do not use an exponential
average of historical group loss statistics.

6 Conclusions

We studied finetuning BERT for SLU datasets
with covariate drift. We presented the SEQDRIFT

method to induce a covariate drift for SLU se-
quence classification tasks. The experimental re-
sults showed that this drift in the input distribu-
tion leads to a drop in performance on four SLU
datasets for a common BERT-based SLU model
finetuned with ERM. We investigated DRO meth-
ods that either use or do not use knowledge about
groups in the data. Our empirical results in an ex-
tensive study indicate that TOPK-based DRO meth-
ods are successful in improving robustness on the
drift datasets.
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SNIPS TOP

Nr of clusters 100 100
Min. freq. of intents 150 150
Min. freq. of slots 50 50
Min. proj. size 10 10
n-gram min 2 2

max 6 5
Top freq. n-grams 10,000 10,000
Drift percentage Full 100% 100%

Partial 90% 90%

Table 7: Hyperparameters for the creation of the SNIPS
and TOP drift datasets.

A Drift dataset creation

The procedure described in Section 3 has a range of
hyperparameters that we did set manually. Our goal
was to improve the clustering not in an adversar-
ial way. Thus those hyperparameter choices were
picked by inspecting the clusters and assessing if
they did display desired properties independently
of the downstream experiments. For example, the
number of clusters was set to 100 as shown in Ta-
ble 7 and was set large enough such that the clus-
tering algorithm did not have to mix clusters into
each other.

Clustering algorithm The clustering algorithm
we used was the spectral clustering imple-
mentation in https://scikit-learn.org/

stable/modules/generated/sklearn.cluster.

SpectralClustering.html. The feature vector
of an example was a weighted indicator vector over
the top most frequent n-grams in the dataset. If an
example contains the kth most frequent n-gram,
then the kth component of this vector was set to
n2, otherwise it was set to 0. The effect of the n2

weighting is to create a higher affinity between
examples that share longer n-grams than shorter
n-grams. The affinity matrix for the spectral
clustering was computed with cosine similarity.

Settings for the dataset The following settings
were used in the dataset creation in our experiments
and are listed in Table 7: (a) The number of clusters.
(b) Thresholds to filter out low frequency intents
and low frequency slot label types, i.e., the mini-
mum frequency of intent labels and slot labels in
the dataset. (c) The minimum size of projected
label counts that we attempt to match. If this pa-
rameter is set too low then many clusters might be

discarded because they would violate the projected
label count. Even when we did not match some of
the projected label counts we did achieve correla-
tions ≥ 98% between training and testing. (d) The
range of n-gram sizes. (e) How many of the top
most frequent n-grams will be used for the feature
vector of an example. (f) We either create a full
drift in which 100% of the examples in a cluster are
assigned to the test split and a partial drift in which
we assign only 90% of the examples in a cluster to
the test split.

Discussion Table 4 lists the statistics for the drift
versions of SNIPS and TOP. As can be seen in the
“% drift” column of the train splits, the partial shift
leads to around 2-3% of training data containing
examples from the clusters that have been shifted
into test. Our main objectives during the creation
of the drift splits was to shift entire clusters into the
splits and to match the intent distribution. We did
not constrain the amount of examples in the test
split that have been deliberately shifted into the test
split, i.e., observe in Table 4 that the “% drift” on
the validation and test splits varies from 23-79%.

B TOPK-AUTOENCODER

In Algorithm 1 we present our proposed strategy
to train a BERT-based SLU model (Chen et al.,
2019) with TOPK-AE. In the following we will
first describe the autoencoder and its optimization
and then the training steps to train a model with
TOPK-AE.

Autoencoder. The input to the autoencoder are
the averaged token representation Xenc each batch
item. Let Xenc ∈ Rb×d, with b being the batch size
and d the hidden size. Let the layers of the autoen-
coder be defined asAenc ∈ Rd×c andAdec ∈ Rc×d
with c being the size of the latent code, i.e. the
number of latent groups. The autoencoder is then
defined as:

H = softmax(XencAenc)

R = HAdec
(1)

Notably, we employ a softmax in the bottleneck H
such that the auto-encoder’s latent code is a distri-
bution over c latent groups. R is the reconstruction
of the autoencoder’s input.

The auto-encoder is optimized with two losses:
i) a reconstruction loss, i.e. the cross entropy

loss of the objective that each reconstruction Ri
should be closer to its original input Xenci than to
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Intent Type Slot Type Train Valid Test Test-Valid

DepartureTime B-Criterion 57 5 5 0
B-StationStart 62 6 6 0
B-Vehicle 61 5 6 1

FindConnection B-Criterion 11 3 3 0
B-StationStart 99 10 10 0
B-StationDest 106 11 11 0

Table 8: The intent-slot distribution for an 80/10/10 train/valid/test splits from a Chatbot SLU dataset (shortened
example)

Algorithm 1 Training SLU with Online Auto-encoder DRO
1: M is the main model (SLU) with two task losses (slot and intent)
2: θM are the main model’s parameters
3: θAE are the auto-encoder’s parameters
4: for data_batch (X, Y) in training_data do
5: Xenc = ENC(X)
6: lslot, lintent = compute the task losses of M on (X,Y )
7: lAE = LRecon(Xenc, θ

t
AE) + βLDivers(Xenc, θ

t
AE)

8: θt+1
AE = update(θtAE ,∇LAE)

9: l̂slot = compute group loss(At+1
enc , Xenc, Lslot)

10: l̂intent = compute group loss(At+1
enc , Xenc, Lintent)

11: θt+1
M = update(θtM ,∇(L̂slot + L̂intent))

12: t = t+ 1
13: end for

other batch items in Xenc. θAE denote the auto-
encoder’s parameters:

LRecon(Xenc, θAE) =

− 1

b

b∑
i=1

log(softmax(XencR
>))i

(2)

For regularization we apply dropout to R before
computing the reconstruction loss.

ii) a diversity loss to prevent the auto-encoder
from collapsing into one mode, which is similar to
the loss used in T-SNE (van der Maaten and Hinton,
2008).

LDivers(Xenc, θAE) =
∑

i 6=j KL(Hi,Hj)

b(b−1) (3)

where θAE denote the auto-encoder’s parameters
and KL the Kullback-Leibler divergence.

This method adds the following hyper-
parameters for the autoencoder: size c of the
autoencoders bottleneck, learning rate λAE and
weight decay αAE , and βAE a scalar for the
reconstruction loss.

We considered the following TOPK-AE variants:

TOPK-AE-PR The bottleneck output of the au-
toencoder is H ∈ [0, 1]b×c, i.e. a distribution over
c groups for each batch item. Let ◦ denote ele-
mentwise multiplication along a matching mode.
Then Ĥ = H ◦ ltask, i.e. Ĥ ∈ Rb×c are the losses
weighted according to each latent group. Instead
of averaging over all losses per latent group, Ĥ is
truncated to the top-k largest weighted losses per
group, i.e. Ĥ ∈ Rk×c and then averaged per group
to yield l̂ ∈ Rc. The final batch loss is max(l̂).

TOPK-AE-BIN Convert H into one-hot distribu-
tions, i.e. hard assignments to a latent group for
each batch item, then proceed like in TOPK-AE-
PR.

Algorithm. The model is finetuned for two task
losses, one for the intent classification task and
one for the sequence tagging classifier for the slot
filling task. While it would be possible to use a
separate autoencoder for each task, we found it
beneficial to share one autoencoder for both task
losses.

One update step is as follows: (i) For each batch
during training, first the auto-encoder’s parameters
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are updated. (ii) Subsequently, we compute the
group losses for the two SLU’s tasks (i.e. slot and
intent) based on H , i.e. the latent groups. This
yields a vector l̂task of loss-aggregations over the
latent groups. H ∈ Rb×c is a distribution over
c groups for each batch item. l̂task = H>ltask
is the vector of group losses in which each batch
item is weighted according to the autoencoder’s
distribution over latent groups. In other words, each
component in l̂ contains the accumulated losses of
all batch items that the autoencoder considers to
be similar. Finally, we update the SLU model’s
parameters using the task group losses.

C Hyperparameters

See Table 9 for a detailed list for all hyperparame-
ters and their search range. The hyper-parameters
that were tuned for all methods are the learning
rate λ and the intent loss scaler γ. Each optimiza-
tion method can have additional hyper-parameters:
GROUP-DRO (Sagawa et al., 2020) has a step size
to compute the exponential average of group losses.
As we discussed in Section 5.2 we observed over-
fitting of the GROUP-DRO method and not pro-
ducing good results on many occasions. We did
attempt to address this and added a geometric de-
cay of the exponential average as an option in the
hyperparameter search, which did help a little bit.
TOPIC-CVAR (Oren et al., 2019) has the CVaR
percentage and also a step size for the exponential
average of losses. The batch size, weight decay,
maximum number of epochs and the intent loss
scaler (see 5.1) were determined in a prior larger
hyperparameter search. We did not find a lot of
variance for their preferred setting, also not in inter-
play with the other DRO methods, which is why we
fixed them to save computation from this point on.
See Section 4.2 and 4.3 for the hyperparameters
of TOPK-AE and TOPK-AE-PR/BIN respectively.
Anecdotally the hyper-parameter k determining the
topk losses in their objective which was tuned for
TOPK and TOPK-AE-PR/BIN typically ended up
in the lower regions of the range, i.e. between 2−8.

D Results

In the following tables we report the numerical
results for the experiments from Section 5 with the
metrics reported in Section 5.1. Additional metrics
we report here is the macro average over intents, i.e.
"MA INT. COMBINED", and SEMER (semantic

error rate) - a metric which is defined as follows:

SEMER =
#(slot+intent errors)

#slots in reference + 1
(4)

The columns containing a "%" indicate relative
change to ERM.
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Optimization description name type range

ERM + all learning rate λ loguniform 1.e-5 - 1.e-4
intent loss scaler γ loguniform 1.e-2 - 10.0
batch size fixed 32
weight decay fixed SNIPS: 0.02, TOP: 0.002
max epochs fixed 100
max warmup steps fixed 0

TOPIC-CVAR alpha uniform 1.e-4 - 0.5
gamma loguniform 1.e-4 - 0.5

GROUP-DRO step size loguniform 1.e-4 - 1.

geometric decay categorical True, False
TOPK topk k logint 1 - 16

TOPK-AE-PR/BIN topk k logint 2 - 16
ae learning rate λAE loguniform 1.e-4 - 1.e-3
ae cluster loss weight βAE loguniform 1.e-1 - 1.0
ae cluster size c int 128, 256, 512

TOPK-GROUP topk k logint 2 - 16

Table 9: Hyperparameters for the different optimization methods used in the experiments.

full shift partial shift
slot value slot context slot value slot context
Acc F1 Acc F1 Acc F1 Acc F1

ATIS -0.3 -0.7 -1.7 0 -0.3 -1.3 -0.7 -0.1
SNIPS -0.2 -3.7 0.0 -5.2 -0.1 -3.2 -0.2 -3.9
MIT -0.2 -2.0 -2.6 -2.9 0 -2.2 -3.2 -3.4
TOP -1.1 -2.7 -1.2 -5.2 -1.2 -2.6 -0.8 -3.7

Table 10: Drop in performance from validation to test for ERM on four of the datasets with different drift types
(slot value, slot context) and drift percentage (full, partial).

COMBINED SIGN. 0.05 ERM SEMER MA INT. COMBINED
% < > % %

GROUP-DRO 91.8 -0.6 6 1 11.8 4.8 85.7 -1.3
TOPK-AE-PR 91.9 -0.4 5 1 11.7 3.4 86.7 -0.1
TOPIC-CVAR 92.1 -0.2 4 0 11.5 2.0 87.1 0.3
ERM 92.3 - - - 11.3 - 86.8 -
TOPK 92.5 0.1 0 3 11.0 -2.7 87.2 0.5
TOPK-AE-BIN 92.5 0.2 0 3 11.0 -2.7 87.5 0.8
TOPK-GROUP 92.5 0.2 0 5 11.0 -2.4 87.5 0.8

Table 11: Results for TOP, averaged over all eight scenarios. Are the DRO methods more robust against the drifts
than ERM? Which DRO method is the most effective? The columns containing a "%" indicate relative change to
ERM.
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COMBINED SIGN. 0.05 ERM SEMER MA INT. COMBINED
% < > % %

GROUP-DRO 96.2 -0.2 5 0 7.1 7.8 96.0 -0.2
TOPIC-CVAR 96.4 0.0 2 1 6.6 1.2 96.2 0.0
ERM 96.4 - - - 6.6 - 96.2 -
TOPK-AE-PR 96.5 0.0 1 2 6.6 -0.1 96.3 0.0
TOPK 96.6 0.1 0 4 6.3 -3.7 96.4 0.2
TOPK-AE-BIN 96.7 0.2 1 2 6.2 -5.4 96.5 0.2
TOPK-GROUP 96.7 0.2 0 4 6.2 -6.0 96.5 0.3

Table 12: Results for SNIPS, averaged over all eight settings. Are the DRO methods more robust against the drifts
than ERM? Which DRO method is the most effective? The columns containing a "%" indicate relative change to
ERM.

validation i.i.d. validation o.o.d.
0.05 ERM 0.05 ERM

% CMB.% SEM. < > % CMB.% SEM. < >

GROUP-DRO -0.2 5.8 2 0 GROUP-DRO -0.3 9.7 3 0
ERM - - - - TOPK-AE-PR -0.1 5.4 1 0
TOPK-AE-BIN 0.1 -2.6 1 1 TOPIC-CVAR -0.1 3.7 2 0
TOPIC-CVAR 0.1 -1.2 0 1 ERM - - - -
TOPK-AE-PR 0.2 -5.5 0 2 TOPK 0.1 -1.5 0 1
TOPK 0.2 -5.8 0 3 TOPK-GR-DRO 0.2 -5.6 0 2
TOPK-GR-DRO 0.3 -6.4 0 2 TOPK-AE-BIN 0.4 -8.3 0 1

Table 13: Results on SNIPS. Comparing validation i.i.d. with validation o.o.d.. This influences hyperparameter
optimization and early stopping. The columns containing a "%" indicate relative change to ERM.

full drift partial drift
0.05 ERM 0.05 ERM

% CMB.% SEM. < > % CMB.% SEM. < >

GROUP-DRO -0.2 5.2 1 0 GROUP-DRO -0.3 10.6 4 0
ERM - - - - TOPIC-CVAR -0.1 4.2 2 0
TOPK-AE-PR 0.1 -1.4 1 1 TOPK-AE-PR 0 1.4 0 1
TOPIC-CVAR 0.1 -1.5 0 1 ERM - - - -
TOPK 0.2 -3.9 0 3 TOPK 0.1 -3.4 0 1
TOPK-AE-BIN 0.2 -5.3 0 2 TOPK-GR-DRO 0.2 -5.3 0 2
TOPK-GR-DRO 0.3 -6.7 0 2 TOPK-AE-BIN 0.2 -5.6 1 0

Table 14: Results on SNIPS. Comparing full vs partial drift on SNIPS. The partial drift means only 90% of the
examples per cluster are shifted into testing. The columns containing a "%" indicate relative change to ERM.
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