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Abstract

Tuning pre-trained language models (PLMs)
with task-specific prompts has been a promis-
ing approach for text classification. Partic-
ularly, previous studies suggest that prompt-
tuning has remarkable superiority in the low-
data scenario over the generic fine-tuning meth-
ods with extra classifiers. The core idea of
prompt-tuning is to insert text pieces, i.e., tem-
plate, to the input and transform a classifica-
tion problem into a masked language modeling
problem, where a crucial step is to construct
a projection, i.e., verbalizer, between a label
space and a label word space. A verbalizer
is usually handcrafted or searched by gradient
descent, which may lack coverage and bring
considerable bias and high variances to the re-
sults. In this work, we focus on incorporating
external knowledge into the verbalizer, form-
ing a knowledgeable prompt-tuning (KPT), to
improve and stabilize prompt-tuning. Specifi-
cally, we expand the label word space of the ver-
balizer using external knowledge bases (KBs)
and refine the expanded label word space with
the PLM itself before predicting with the ex-
panded label word space. Extensive experi-
ments on zero and few-shot text classification
tasks demonstrate the effectiveness of knowl-
edgeable prompt-tuning. Our source code is
publicly available at https://github.com/

thunlp/KnowledgeablePromptTuning.

1 Introduction

Recent years have witnessed the prominence of Pre-
trained Language Models (PLMs) (Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2019;
Raffel et al., 2020; Xu et al., 2021) due to their
superior performance on a wide range of language-
related downstream tasks such as text classifica-
tion (Kowsari et al., 2019), question answering (Ra-
jpurkar et al., 2016), and machine reading compre-
hension (Nguyen et al., 2016). To fathom the prin-
∗ Corresponding authors: Z.Liu (liuzy@tsinghua.edu.cn),
H.Wang (huadw2012@163.com)

ciples of such effectiveness of PLMs, researchers
have conducted extensive studies and suggested
that PLMs have obtained rich knowledge during
pre-training (Petroni et al., 2019; Davison et al.,
2019). Hence, how to stimulate and exploit such
knowledge is receiving increasing attention.

One conventional approach to achieve that is
fine-tuning (Devlin et al., 2019), where we add
extra classifiers on the top of PLMs and fur-
ther train the models under classification objec-
tives. Fine-tuning has achieved satisfying results
on supervised tasks. However, since the extra
classifier requires adequate training instances to
tune, it is still challenging to apply fine-tuning
in few-shot learning (Brown et al., 2020) and
zero-shot learning (Yin et al., 2019) scenarios.
Originated from GPT-3 (Brown et al., 2020) and
LAMA (Petroni et al., 2019, 2020), a series of
studies using prompts (Schick and Schütze, 2021a;
Liu et al., 2021) for model tuning bridge the gap
between pre-training objective and down-stream
tasks, and demonstrate that such discrete or contin-
uous prompts induce better performances for PLMs
on few-shot and zero-shot tasks.

A typical way to use prompts is to wrap the in-
put sentence into a natural language template and
let the PLM conduct masked language modeling.
For instance, to classify the topic of a sentence x:
“What’s the relation between speed and accelera-
tion?” into the “SCIENCE” category, we wrap it
into a template: “A [MASK] question: x”. The
prediction is made based on the probability that the
word “science” is filled in the “[MASK]” token.
The mapping from label words (e.g., “science” )
to the specific class (e.g., class SCIENCE) is called
the verbalizer (Schick and Schütze, 2021a), which
bridges a projection between the vocabulary and
the label space and has a great influence on the
performance of classification (Gao et al., 2021).

Most existing works use manual verbaliz-
ers (Schick and Schütze, 2021a,b), in which the
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designers manually think up a single word to indi-
cate each class. To ease the human effort of design-
ing the class name, some works propose to learn
the label words using discrete search (Schick et al.,
2020) or gradient descent (Liu et al., 2021; Ham-
bardzumyan et al., 2021). However, the learned-
from-scratch verbalizer, lack of human prior knowl-
edge, is still considerably inferior to the manual
verbalizers (see Appendix A for pilot experiments),
especially in few-shot setting, and even not appli-
cable in zero-shot setting, which leaves the manual
verbalizer a decent choice in many cases.

However, manual verbalizers usually determine
the predictions based on limited information. For
instance, in the above example, the mapping
{science}→ SCIENCE means that only predicting
the word “science” for the [MASK] token is re-
garded as correct during inference, regardless of
the predictions on other relevant words such as
“physics” and “maths”, which are also informative.
Such handcrafted one-one mapping limits the cov-
erage of label words, thus lacking enough infor-
mation for prediction and introducing bias into the
verbalizer. Therefore, manual verbalizers are hard
to be optimal in text classification, where the se-
mantics of label words are crucial for predictions.

The optimization-based expansion, though can
be combined with manual verbalizers to yield bet-
ter performance, only induces a few words or em-
beddings that are close to the class name in terms
of word sense or embedding distance. Thus they
are difficult to infer words across granularities
(e.g. from “science” to “physics”). If we can
expand the verbalizer of the above example into
{science, physics} → SCIENCE, the probability of
making correct predictions will be considerably en-
hanced. Therefore, to improve the coverage and
reduce the bias of the manual verbalizer, we present
to incorporate external knowledge into the verbaliz-
ers to facilitate prompt-tuning, namely, knowledge-
able prompt-tuning (KPT). Since our expansion
is not based on optimization, it will also be more
favorable for zero-shot learning.

Specifically, KPT contains three steps: construc-
tion, refinement, and utilization. (1) Firstly, in the
construction stage, we use external KBs to gener-
ate a set of label words for each label (in § 3.2).
Note that the expanded label words are not sim-
ply synonyms of each other, but cover different
granularities and perspectives, thus are more com-
prehensive and unbiased than the class name. (2)

Secondly, to cope with the noise in the unsuper-
vised expansion of label words, we propose four
refinement methods, namely, frequency refinement,
relevance refinement, contextualized calibration,
and learnable refinement (in § 3.3), whose effec-
tiveness is studied thoroughly in § 4. (3) Finally,
we apply either a vanilla average loss function or a
weighted average loss function for the utilization
of expanded verbalizers, which map the scores on
a set of label words to the scores of the labels.

We conduct extensive experiments on zero-shot
and few-shot text classification tasks. The empiri-
cal results show that KPT can reduce the error rate
of classification by 16%, 18%, 10%, 7% on average
in 0, 1, 5, 10 shot experiments, respectively, which
shows the effectiveness of KPT. In addition to the
performance boost, KPT also reduces the predic-
tion variances consistently in few-shot experiments
and yields more stable performances.

2 Related Work

Two groups of research are related to KPT: prompt-
tuning, and the verbalizer construction.

Prompt-tuning. Since the emergence of GPT-
3 (Brown et al., 2020), prompt-tuning has re-
ceived considerable attention. GPT-3 (Brown et al.,
2020) demonstrates that with prompt-tuning and in-
context learning, the large-scale language models
can achieve superior performance in the low-data
regime. The following works (Schick and Schütze,
2021a,b) argue that small-scale language models
(Radford et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020) can also achieve decent per-
formance using prompt-tuning. Prompt-tuning has
been applied to a large variety of tasks such as Text
Classification (Schick and Schütze, 2021a), Natu-
ral Language Understanding (Schick and Schütze,
2021b; Liu et al., 2021) , Relation Extraction (Han
et al., 2021; Chen et al., 2021), and Knowledge
Probing (Petroni et al., 2019; Liu et al., 2021), etc.

Verbalizer Construction. As introduced in
§ 1, the verbalizer is an important component in
prompt-tuning and has a strong influence on the
performance of prompt-tuning (Holtzman et al.,
2021; Gao et al., 2021). Most works use human-
written verbalizers (Schick and Schütze, 2021a),
which are highly biased towards personal vocab-
ulary and do not have enough coverage. Some
other studies (Gao et al., 2021; Shin et al., 2020;
Liu et al., 2021; Schick et al., 2020) design auto-
matic verbalizer searching methods for better ver-
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Figure 1: The illustration of KPT , the knowledgeable verbalizer maps the predictions over label words into labels.
And the above part is the construction, refinement and utilization processes of KPT .

balizer choices, however, their methods require
adequate training set and validation set for opti-
mization. Moreover, the automatically determined
verbalizers are usually synonym of the class name,
which differs from our intuition of expanding the
verbalizer with a set of diverse and comprehen-
sive label words using external KB. Schick et al.
(2020) and Shin et al. (2020) also try multiple label
words for each class. The optimal size of their label
words set for each class is generally less than 10,
which lacks coverage when used in text classifica-
tion tasks.

3 Knowledgeable Prompt-tuning

In this section, we present our methods to incorpo-
rate external knowledge into a prompt verbalizer.
We first introduce the overall paradigm of prompt-
tuning and then elucidate how to construct, refine
and utilize the knowledgeable prompt.

3.1 Overview

Let M be a language model pre-trained on large
scale corpora. In text classification task, an input
sequence x = (x0, x1, ..., xn) is classified into a
class label y ∈ Y . Prompt-tuning formalizes the
classification task into a masked language model-
ing problem. Specifically, prompt-tuning wraps the
input sequence with a template, which is a piece of
natural language text. For example, assuming we
need to classify the sentence x =“What’s the rela-
tion between speed and acceleration?” into label

SCIENCE (labeled as 1) or SPORTS (labeled as 2),
we wrap it into

xp = [CLS] A [MASK] question : x

Then M gives the probability of each word v
in the vocabulary being filled in [MASK] token
PM([MASK] = v|xp). To map the probabilities
of words into the probabilities of labels, we define
a verbalizer as a mapping f from a few words in
the vocabulary, which form the label word set V ,
to the label space Y , i.e., f : V 7→ Y . We use Vy

to denote the subset of V that is mapped into a spe-
cific label y, ∪y∈YVy = V . Then the probability of
label y, i.e., P (y|xp), is calculated as

P (y|xp)=g
(
PM([MASK]=v|xp)|v ∈ Vy

)
, (1)

where g is a function transforming the probabil-
ity of label words into the probability of the label.
In the above example, regular prompt-tuning may
define V1 = {“science”}, V2 = {“sports”} and g
as an identity function, then if the probability of
“science” is larger than “sports”, we classify the
instance into SCIENCE.

We propose KPT, which mainly focuses on us-
ing external knowledge to improve verbalizers in
prompt-tuning. In KPT , we use KBs to generate
multiple label words related to each class y, e.g.,
V1 = {“science”,“physics”, ...}. And we propose
four refinement methods to eliminate the noise in
the expanded V . Finally, we explore the vanilla
average and weighted average approaches for the
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utilization of the expanded V . The details are in
the following sections.

3.2 Verbalizer Construction

The process of predicting masked words based on
the context is not a single-choice procedure, that is,
there is no standard correct answer, but abundant
words may fit this context. Therefore, the label
words mapped by a verbalizer should be equipped
by two attributes: wide coverage and little sub-
jective bias. Such a comprehensive projection is
crucial to the imitation of pre-training, which is
the essence of prompt-tuning. Fortunately, external
structured knowledge could simultaneously meet
both requirements. In this section, we introduce
how we use external knowledge for two text clas-
sification tasks: topic classification and sentiment
classification.

For topic classification, the core issue is to ex-
tract label words related to the topic from all as-
pects and granularities. From this perspective,
we choose Related Words 1, a knowledge graph
G aggregated from multiple resources, including
word embeddings, ConceptNet (Speer et al., 2017),
WordNet (Pedersen et al., 2004), etc., as our ex-
ternal KB. The edges denote "relevance" relations
and are annotated with relevance scores. We pre-
sume the the name of each class v0 is correct and
use them as the anchor node to get the neigh-
borhood nodes NG(v0) whose scores are larger
than a threshold η as the related words 2. Thus,
each class is mapped into a set of label words
Vy = NG(v0) ∪ {v0}. For binary sentiment clas-
sification, the primary goal is to extend the binary
sentiment to sentiment of more granualities and as-
pects. We use the sentiment dictionary summarized
by previous researchers 3,4. Several examples of
the label words in the KPT are in Table 1.

3.3 Verbalizer Refinement

Although we have constructed a knowledgeable
verbalizer that contains comprehensive label words,
the collected label words can be very noisy since
the vocabulary of the KB is not tailored for the
PLM. Thus it is necessary to refine such verbalizer
by retaining high-quality words. In this section,

1https://relatedwords.org
2We take η = 0 in the experiments
3https://www.enchantedlearning.com/
wordlist/positivewords.shtml

4https://www.enchantedlearning.com/
wordlist/negativewords.shtml

we propose four refinement methods addressing
different problems of the noisy label words.

Frequency Refinement. The first problem is
to handle the rare words. We assume that several
words in the KB are rare to the PLM, thus the
prediction probabilities on these words tend to be
inaccurate. Instead of using a word-frequency dic-
tionary, we propose to use contextualized prior of
the label words to remove these words. Specifi-
cally, given a text classification task, we denote the
distribution of the sentences x in the corpus as D.
For each sentence in the distribution, we wrap it
into the template and calculate the predicted proba-
bility for each label word v in the masked position
PM([MASK]=v|xp). By taking the expectation of
the probability over the entire distribution of sen-
tences, we can get the prior distribution of the label
words in the masked position. We formalize it as

PD(v)=Ex∼DPM([MASK]=v|xp). (2)

Empirically, we found that using a small-size un-
labeled support set C̃ sampled from the training
set and with labels removed, will yield a satisfying
estimate of the above expectation. Thus, assuming
that the input samples {x ∈ C̃} have a uniform
prior distribution, the contextualized prior is ap-
proximated by

PD(v) ≈
1

|C̃|

∑
x∈C̃

PM([MASK]=v|xp). (3)

Then we remove the label words whose prior prob-
abilities are less than a threshold. Details can be
found in Appendix C.

Relevance Refinement. As our construction of
knowledgeable label words is fully unsupervised,
some label words may be more relevant to their
belonging class than the others. To measure the
relevance of a label word to each class, we obtain
the prediction probability of the label word on the
support set C̃ as the vector representation qv of the
label words, i.e., qv’s i-th element is

qv
i = PM([MASK] = v|xip),xi ∈ C̃, (4)

where xip represents the sentence xi combined with
the template p.

To estimate the class’s representation, we pre-
sume that the name of each class v0, such as “sci-
ence” for SCIENCE, though lack of coverage, is
very relevant to the class. Then we use the vec-
tor representation qv0 of the these names as the
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Dataset Label Label Words

AG’s News
POLITICS politics, government, diplomatic, law, aristotle, diplomatical, governance ...
SPORTS sports, athletics, gymnastics, sportsman, competition, cycling, soccer ...

IMDB
NEGATIVE abysmal, adverse, alarming, angry, annoy, anxious, apathy, appalling ...
POSITIVE absolutely, accepted, acclaimed, accomplish, accomplishment ...

Table 1: Examples of the expanded label words.

class’s representation qy. Therefore the relevance
score between a label word v and a class y is cal-
culated as the cosine similarity between the two
representation:

r(v, y) = cos(qv,qy) = cos(qv,qv0). (5)

Moreover, some label words may contribute pos-
itively to multiple classes, resulting in confusion
between classes. For example, the potential label
word “physiology” of class SCIENCE may also be
assigned with a high probability in a sentence of
class SPORTS. To mitigate such confusion and
filter the less relevant label words, we design a met-
ric that favors the label word with high relevance
merely to its belonging class and low relevance to
other classes:

R(v) = r(v, f(v))
|Y| − 1∑

y∈Y,y ̸=f(v)(r(v, y))
, (6)

where f(v) is the corresponding class of v.
Ideally, a good label word should at least has a

higher relevance score for its belonging class than
the average relevance score for the other classes.
Therefore, we remove the label words with R(v) <
1. In practice, we have a slight modification to
Equation (6), please refer to appendix C for details.

Essentially, this Relevance Refinement adopts
the idea of the classical TF-IDF (Jones, 1972) algo-
rithm which estimates the relevance of a word to a
document. It prefers to use a word that is relevant
to a specific document while irrelevant to other doc-
uments as the keyword of the document. In KPT,
a class is analogous to a document, while a label
word is comparable to the word in the document.
From this perspective, equation (6) is a variant of
TF-IDF metric.

Contextualized Calibration. The third prob-
lem is the drastic difference in the prior probabili-
ties of label words. As previous works (Zhao et al.,
2021; Holtzman et al., 2021) have shown, some
label words are less likely to be predicted than the
others, regardless of the label of input sentences,

resulting in a biased prediction. In our setting, the
label words in the KB tend to have more diverse
prior probabilities, resulting in a severer problem
(see Table 2). Therefore, we use the contextualized
prior of label words to calibrate the predicted dis-
tribution, namely, contextualized calibration (CC):

P̃M([MASK]=v|xp)∝
PM([MASK]=v|xp)

PD(v)
(7)

where PD(v) is the prior probability of the label
word. The final probability is normalized to 1.

Learnable Refinement. In few-shot learning,
the refinement can be strengthen by a learning pro-
cess. Specifically we assign a learnable weight wv

to each label word v (may be already refined by
the previous methods). The weights form a vector
w ∈ R|V|, which is initialized to be a zero vector.
The weights are normalized within each Vy:

αv =
exp(wv)∑

u∈Vy
exp(wu)

. (8)

Intuitively, in the training process, a small weight
is expected to be learned for a noisy label word
to minimize its influence on the prediction. Note
that in few-shot setting, calibration may not be
necessary because the probability of a label word
can be trained to the desired magnitude, i.e.,
P̃M([MASK]=v|xp) = PM([MASK]=v|xp).

In addition to these refinement methods, since
many label words are out-of-vocabulary for the
PLM and are split into multiple tokens by the tok-
enizer. For these words, we simply use the average
prediction score of each token as the prediction
score for the word. The influence of this simple
approach is studied in Appendix D.3.

3.4 Verbalizer Utilization
The final problem is how to map the predicted prob-
ability on each refined label word to the decision
of the class label y.

Average. After refinement, we can assume that
each label word of a class contributes equally to
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predicting the label. Therefore, we use the average
of the predicted scores on Vy as the predicted score
for label y. The predicted label ŷ is

ŷ=argmax
y∈Y

∑
v∈Vy

P̃M([MASK] = v|xp)

|Vy|
. (9)

We use this method in zero-shot learning since
there is no parameter to be trained.

Weighted Average. In few-shot setting, sup-
ported by the Learnable Refinement, we adopt a
weighted average of label words’ scores as the pre-
diction score. The refinement weights αv are used
as the weights for averaging. Thus, the predicted ŷ
is

ŷ= argmaxy∈Y
exp

(
s(y|xp)

)∑
y′ exp

(
s(y′|xp)

) , (10)

where s(y|xp) is

s(y|xp)=
∑
v∈Vy

αv logPM([MASK]=v|xp). (11)

This objective function is suitable for continuous
optimization by applying a cross-entropy loss on
the predicted probability.

3.5 Theoretical Illustration of KPT
We provide a theoretical illustration of the KPT
framwork in Appendix B.

4 Experiments

We evaluate KPT on five text classification datasets
to demonstrate the effectiveness of incorporating
external knowledge into prompt-tuning.

4.1 Datasets and Templates
We carry out experiments on three topic classifica-
tion datasets: AG’s News (Zhang et al., 2015), DB-
Pedia (Lehmann et al., 2015), and Yahoo (Zhang
et al., 2015), and two sentiment classification
datasets: IMDB (Maas et al., 2011) and Ama-
zon (McAuley and Leskovec, 2013). The statistics
of the datasets are shown in Table 7. The detailed
information and the statistics of each dataset is in
Appendix E.

We test all prompt-based methods using four
manual templates and report both the average re-
sults (with standard error) of the four templates and
the results of the best template (shown in (brack-

ets) ). The reasons for using manual templates and
the specific templates for each dataset are in Ap-
pendix E.

4.2 Experiment Settings

Our experiments are based on OpenPrompt (Ding
et al., 2021), which is an open-source toolkit to
conduct prompt learning. For the PLM, we use
RoBERTalarge (Liu et al., 2019) for all experiments.
For test metrics, we use Micro-F1 in all experi-
ments. For all zero-shot experiments, we repeat
the experiments 3 times using different random
seeds if randomness is introduced in the experi-
ments, and for all few-shot experiments, we repeat
5 times. Note that considering the four templates
and five/three random seeds, each reported score
of prompt-based methods is the average of 20/12
experiments, which greatly reduces the random-
ness of the evaluation results. For the refinement
based on the support set C̃, the size of the unlabeled
support set |C̃| is 200. For few-shot learning, we
conduct 1, 5, 10, and 20-shot experiments. For a
k-shot experiment, we sample k instances of each
class from the original training set to form the few-
shot training set and sample another k instances
per class to form the validation set. We tune the en-
tire model for 5 epochs and choose the checkpoint
with the best validation performance to test. Other
hyper-parameters can be found in Appendix F.

4.3 Baselines

In this subsection, we introduce the baselines we
compare with. To better understand our proposed
methods, we also compare within the performance
of KPT using different configuration.

Fine-tuning (FT). Traditional fine-tuning
method inputs the hidden embedding of [CLS]
token of the PLM into the classification layer to
make predictions. Note that fine-tuning can not be
applied to the zero-shot setting, since the classifica-
tion layer is randomly initialized.

Prompt-tuning (PT). The regular prompt-
tuning method uses the class name as the only label
word for each class, which is used in PET (Schick
and Schütze, 2021a) and most existing works. For
a fair comparison, we do not use the tricks in PET,
such as self-training and prompt ensemble, which
are orthogonal to our contributions.

Automatic Verbalizer (AUTO). The auto-
matic verbalizer is proposed by PETAL (Schick
et al., 2020), which uses labeled data to select the
most informative label words inside a PLM’s vo-
cabulary. It is targeted at the situation when no
manually defined class names are available. It’s not
obvious how to combine it with the manually de-
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Method AG’s News DBPedia Yahoo Amazon IMDB

PT 75.1 ± 6.2 (79.0) 66.6 ± 2.3 (68.4) 45.4 ± 7.0 (52.0) 80.2 ± 8.8 (87.8) 86.4 ± 4.0 (92.0)

PT+CC 79.9 ± 0.7 (81.0) 73.9 ± 4.9 (82.6) 58.0 ± 1.4 (58.8) 91.4 ± 1.6 (93.5) 91.6 ± 3.0 (93.7)

KPT 84.8 ± 1.2 (86.7) 82.2 ± 5.4 (87.4) 61.6 ± 2.2 (63.8) 92.8 ± 1.2 (94.6) 91.6 ± 2.7 (94.0)

-FR 82.7 ± 1.5 (85.0) 81.8 ± 4.6 (86.2) 60.9 ± 1.5 (62.7) 92.8 ± 1.2 (94.6) 91.6 ± 2.8 (94.1)

-RR 81.4 ± 1.5 (83.7) 81.4 ± 4.5 (85.8) 60.1 ± 1.0 (61.4) 92.8 ± 1.2 (94.6) 91.6 ± 2.8 (94.1)

-CC 55.5 ± 2.8 (58.3) 64.5 ± 6.8 (73.0) 42.4 ± 5.0 (46.8) 86.2 ± 5.7 (92.5) 90.3 ± 2.8 (94.1)

Table 2: Results of zero-shot text classification. The results of the best templates are shown in the brackets.
Indentation means that the experimental configuration is a modification based on the up-level indentation.

Shot Method AG’s News DBPedia Yahoo Amazon IMDB

1

FT 19.8 ± 10.4 8.6 ± 4.5 11.1 ± 4.0 49.9 ± 0.2 50.0 ± 0.0
PT 80.0 ± 6.0 (84.4) 92.2 ± 2.5 (94.3) 54.2 ± 3.1 (55.7) 91.9 ± 2.7 (93.2) 91.2 ± 3.7 (93.7)

AUTO 52.8 ± 9.8 (57.6) 63.0 ± 8.9 (68.3) 23.3 ± 4.5 (25.0) 66.6 ± 12.5 (72.7) 75.5 ± 15.5 (83.1)

SOFT 80.0 ± 5.6 (82.4) 92.3 ± 2.3 (93.3) 54.3 ± 2.7 (55.9) 90.9 ± 5.8 (93.6) 89.4 ± 8.9 (93.1)

KPT 83.7 ± 3.5 (84.6) 93.7 ± 1.8 (95.3) 63.2 ± 2.5 (64.1) 93.2 ± 1.3 (93.9) 92.2 ± 3.0 (93.6)

- LR 83.5 ± 3.8 (84.3) 93.0 ± 1.8 (94.5) 62.2 ± 2.9 (63.6) 93.3 ± 1.3 (93.9) 92.2 ± 2.8 (93.6)

- RR 82.2 ± 3.2 (82.6) 92.9 ± 1.8 (94.1) 61.3 ± 4.2 (62.5) 93.1 ± 1.5 (93.7) 92.6 ± 1.7 (93.6)

- RR - LR 81.8 ± 3.3 (82.5) 91.3 ± 1.7 (92.6) 60.7 ± 4.2 (61.4) 93.2 ± 1.5 (93.9) 92.6 ± 1.5 (93.5)

5

FT 37.9 ± 10.0 95.8 ± 1.3 25.3 ± 14.2 52.1 ± 1.3 51.4 ± 1.4
PT 82.7 ± 2.7 (84.0) 97.0 ± 0.6 (97.3) 62.4 ± 1.7 (63.9) 92.2 ± 3.3 (93.5) 91.9 ± 3.1 (92.7)

AUTO 72.2 ± 10.1 (75.6) 88.8 ± 3.9 (91.5) 49.6 ± 4.3 (51.2) 87.5 ± 7.4 (90.8) 86.8 ± 10.1 (92.1)

SOFT 82.8 ± 2.7 (84.3) 97.0 ± 0.6 (97.2) 61.8 ± 1.8 (63.1) 93.2 ± 1.6 (94.2) 91.6 ± 3.4 (93.9)

KPT 85.0 ± 1.2 (85.9) 97.1 ± 0.4 (97.3) 67.2 ± 0.8 (67.8) 93.4 ± 1.9 (94.1) 92.7 ± 1.5 (92.9)

- LR 85.1 ± 1.0 (85.8) 97.1 ± 0.4 (97.2) 67.0 ± 1.1 (67.5) 93.4 ± 1.9 (94.1) 92.8 ± 1.5 (93.0)

- RR 84.3 ± 1.8 (84.9) 97.2 ± 0.4 (97.3) 67.2 ± 0.8 (67.7) 93.6 ± 1.4 (94.1) 93.0 ± 2.0 (93.8)

- RR - LR 84.2 ± 1.7 (84.5) 97.1 ± 0.4 (97.3) 66.6 ± 1.4 (67.5) 93.4 ± 2.0 (94.1) 93.0 ± 2.1 (93.8)

10

FT 75.9 ± 8.4 93.8 ± 2.2 43.8 ± 17.9 83.0 ± 7.0 76.2 ± 8.7
PT 84.9 ± 2.4 (86.1) 97.6 ± 0.4 (97.8) 64.3 ± 2.2 (64.8) 93.9 ± 1.3 (94.6) 93.0 ± 1.7 (94.0)

AUTO 81.4 ± 3.8 (84.1) 91.5 ± 3.4 (95.1) 58.7 ± 3.1 (60.9) 93.7 ± 1.2 (94.5) 91.1 ± 5.1 (93.3)

SOFT 85.0 ± 2.8 (86.7) 97.6 ± 0.4 (97.8) 64.5 ± 2.2 (65.0) 93.9 ± 1.7 (93.9) 91.8 ± 2.6 (93.0)

KPT 86.3 ± 1.6 (87.0) 98.0 ± 0.2 (98.1) 68.0 ± 0.6 (68.2) 93.8 ± 1.2 (94.1) 92.9 ± 1.8 (93.3)

- LR 85.9 ± 1.9 (87.1) 98.0 ± 0.2 (98.1) 67.9 ± 0.7 (68.2) 93.9 ± 1.1 (94.1) 93.0 ± 1.7 (93.2)

- RR 85.6 ± 1.4 (86.2) 97.9 ± 0.2 (98.0) 67.5 ± 1.1 (68.1) 94.0 ± 1.0 (94.7) 92.7 ± 2.1 (93.0)

- RR - LR 85.1 ± 1.4 (86.0) 97.8 ± 0.2 (97.8) 66.8 ± 1.1 (67.6) 94.1 ± 0.9 (94.8) 93.0 ± 2.0 (93.4)

20

FT 85.4 ± 1.8 97.9 ± 0.2 54.2 ± 18.1 71.4 ± 4.3 78.5 ± 10.1
PT 86.5 ± 1.6 (87.0) 97.9 ± 0.3 (98.1) 67.2 ± 1.1 (67.5) 93.5 ± 1.0 (94.4) 93.0 ± 1.1 (93.6)

AUTO 85.7 ± 1.4 (86.1) 92.2 ± 2.7 (94.9) 65.0 ± 1.8 (66.9) 93.9 ± 1.1 (94.1) 92.8 ± 2.0 (94.0)

SOFT 86.4 ± 1.7 (87.1) 98.0 ± 0.3 (98.1) 67.4 ± 0.7 (67.5) 93.8 ± 1.6 (94.2) 93.5 ± 0.9 (94.0)

KPT 87.2 ± 0.8 (87.5) 98.1 ± 0.3 (98.2) 68.9 ± 0.8 (69.3) 93.7 ± 1.6 (94.4) 93.1 ± 1.1 (93.5)

- LR 87.7 ± 0.6 (87.8) 98.1 ± 0.3 (98.2) 68.8 ± 0.9 (69.8) 93.4 ± 2.3 (94.3) 93.4 ± 0.9 (93.6)

- RR 87.3 ± 0.8 (87.5) 98.1 ± 0.3 (98.2) 68.8 ± 0.9 (68.9) 93.6 ± 1.3 (94.2) 93.1 ± 0.8 (93.6)

- RR - LR 87.1 ± 0.9 (87.4) 98.1 ± 0.3 (98.2) 69.0 ± 0.7 (69.3) 93.7 ± 0.9 (94.5) 93.1 ± 0.8 (93.7)

Table 3: Results of 1/5/10/20-shot text classification. Indentation means that the experimental configuration is a
modification based on the up-level indentation.

fined class name to boost the performance, and how
it can be applied in a zero-shot setting. Therefore
we only compare it in the few-shot setting with no
class name information given.

Soft Verbalizer (SOFT). The soft verbalizer
is proposed by WARP (Hambardzumyan et al.,

2021). They use a continuous vector for each class
and use the dot product between the masked lan-
guage model output and the class vector to produce
the probability for each class. In our experiments,
its class vectors are initialized with the class names’
word embedding, since it is more effective with
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manual class names as the initial values (see Ap-
pendix A). As an optimization-based method, Soft
Verbalizer is not applicable in the zero-shot setting.

PT+CC. For zero-shot setting, we further intro-
duce PT combined with our proposed contextual-
ized calibration5 as a baseline to see how much
improvement is made by contextualized calibration
instead of knowledgeable verbalizers.

For KPT , we experiment with different variants
to better understand the proposed methods such as
refinement. -FR, -RR, -CC and -LR is the variant
that does not conduct Frequency Refinement, Rele-
vance Refinement, Contextualized Calibration, and
Learnable Refinement, respectively. In few-shot ex-
periments, we presume that the supervised training
data can train the output probability of each label
word to the desired magnitude, thus we don’t use
CC and FR in the KPT . This decision is justified
in Appendix D.2.

4.4 Main Results

In this subsection, we introduce the specific results
and provide possible insights of KPT .

Zero-shot. From Table 2, we see that all the
variants of KPT , except for KPT-CC, consistently
outperforms PT and PT+CC baselines, which indi-
cates the effectiveness of our methods. Comparison
between PT and PT+CC proves that Contextualized
Calibration is very effective in the zero-shot setting.
The results of KPT-FR-RR-CC, which is the vari-
ant without any refinement, reveal the label noise is
severe in the automatically constructed knowledge-
able label words. The gap between KPT-FR-RR
and KPT-FR-RR-CC is larger than the gap between
PT+CC and PT, demonstrating the drastic differ-
ence in the prior probabilities of the knowledgeable
label words as we hypothesized in § 3.3. Compar-
ison between KPT, KPT-FR, KPT-FR-RR proves
the effectiveness of the refinement methods.

For the analysis regarding each type of classifi-
cation task, we observe that the performance boost
compared to the baselines in topic classification
is higher than sentiment classification, which we
conjecture that topic classification requires more
external knowledge than sentiment classification.
While CC offers huge improvement (on average
+13%) over PT baseline, the incorporation of exter-
nal knowledge further improves over PT+CC up to
11% on DBPedia, and 6% on AG’s News and Ya-
hoo. We also observe that the improvement brought

5The same support sets are used as KPT .

by the refinement methods is more noticeable for
topic classification tasks. By looking at the frac-
tion of label words maintained after the refinement
process (See appendix D.4), we conjecture that the
sentiment dictionary that we used in sentiment clas-
sification tasks contains little noise. Moreover, the
improvement brought by the refinement process
justifies the resilience of our methods to recover
from noisy label words.

Few-shot. From Table 3, we first find out that
prompt-based methods win over fine-tuning by a
dramatic margin under nearly all situations. The
gap enlarges as the shot becomes fewer. Comparing
the baseline methods, the Soft Verbalizer (SOFT)
generally wins over the Manual Verbalizer(PT) by
a slight margin. However, automatic verbalizer
(AUTO), although free of manual effort, lags be-
hind the other verbalizers especially in a low-shot
setting. The reason is obvious since the selection
of label words among the vocabulary becomes in-
accurate when labeled data is limited.

When comparing KPT with the baseline meth-
ods, we find KPT or its variants consistently out-
perform all baseline methods. On average, 17.8% ,
10.3%, and 7.4% error rate reduction from the best
baseline methods are achieved on 1, 5, and 10 shot
experiments, respectively. Comparing within the
variants of KPT , we find that RR and LR are gen-
erally effective across shots on topic classification
dataset, while in sentiment classification dataset,
KPT works well without the refinements, which
is consistent with our previous assumptions that
the sentiment dictionary has little noise. Note that
the KPT-RR variant does not utilize any unlabeled
support set C̃ since we do not conduct CC and FR
by default in few-shot learning. This variant is
still superior to the baseline methods in most cases.
In terms of variance, we can see that KPT enjoys
smaller variances than baseline methods in most
cases, demonstrating that the better coverage of
label words stabilizes the training.

For 20-shot experiments, we can see that the gap
between different methods narrows as the training
data becomes sufficient. However, KPT and its
variants still win by a consistent margin over the
baseline methods. Surprisingly, with more training
data, LR does not become more powerful as we
may hypothesize. We conjecture that it is because
all label words, even with some noise, can serve as
training objectives for prompt tuning. This perspec-
tive is similar to Gao et al. (2021) that using “bad”
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as a label word for the class “positive” can still
preform classification although the performance
degrades.

5 Analysis

Ablation studies about our refinement methods
have been shown in the previous section. In this
section and Appendix D, we conduct more in-depth
analyses on the proposed methods.

5.1 Diversity of Top Predicted Words
One advantage of KPT is that it can generate di-
verse label words across different granularities. To
specifically quantify such diversity, we conduct a
case study. For the correctly predicted sentences
of a class y, we count the frequency of label words
v ∈ Vy appearing in the top-5 predictions for the
[MASK] position. Then we report the top-15 fre-
quent label words in Figure 2. Due to space limit,
only the results of SPORTS and BUSINESS cate-
gory of AG’s News are shown. As shown in Fig-
ure 2, a diversity of label words, instead of mainly
the original class names, are predicted. And the
predicted label words cover various aspects of the
corresponding topic. For example, for the topic
SPORTS, the predicted “leagues”, “football”, and
“coach” are related to it from different angles.
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Figure 2: Frequent words appearing in the top-5 predic-
tions. The results for two classes: SPORTS (left) and
BUSINESS (right) are drawn.

5.2 Other Analyses
In addition to the visualization, we study the in-
fluence of the support set’s size on zero-shot text
classification in Appendix D.1. Then we justify that
few-shot learning via labeled data eases the need
for calibration and frequency-based refinement in
Appendix D.2. We also demonstrate that our ap-
proach to handling the out-of-vocabulary (OOV)

words is reasonable in Appendix D.3. Moreover,
we take a closer look at the refinement process by
analyzing the fraction of label words maintained
during refinement in Appendix D.4. Finally, we
discuss the potential use of the proposed methods
when knowledge bases resources are not readily
available in Appendix D.5.

6 Conclusion

In this paper, we propose KPT , which expands
the verbalizer in prompt-tuning using the external
KB. To better utilize the KB, we propose refine-
ment methods for the knowledgeable verbalizer.
The experiments show the potential of KPT in both
zero-shot settings and few-shot settings. For fu-
ture work, there are open questions related to our
research for investigation: (1) Better approaches
for combining KB and prompt-tuning in terms of
template construction and verbalizer design. (2) In-
corporating external knowledge into prompt-tuning
for other tasks such as text generation.
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A Pilot Experiments

As pointed out by (Gao et al., 2021), manually
defined verbalizer is competitive or even better
than automatically searched/optimized verbalizers,
which strengthens our motivation to improve over
manual verbalizers by injecting more external hu-
man knowledge. To further illustrate the advan-
tage of manual verbalizer, we conduct pilot exper-
iments in soft verbalizer. Soft Verbalizer (Ham-
bardzumyan et al., 2021) can be initialized with the
predefined class name as the label words, which is
adopted by us as a baseline in Table 3. It can also be
randomly initialized without the manually defined
class names. We test the performance of Soft Ver-
balizer with and without the manually defined class
name in 5 and 10 shot experiments. From Table 4,
we can see that the gaps between the variants are
generally large. Therefore further improving the
verbalizer with manually defined class name is a
promising direction than the learned-from-scratch
verbalizer without any human prior.

B A Theoretical Illustration of KPT

In this section we provide a theoretical analysis
of the whole framework used by KPT . In prompt
tuning, given a text x, we wrap it into a template to
form a wrapped sentence xp. We then predict the
probability of the label word v using a PLM:

p([M]=v|x) = PM([M]=v|xp), (12)

where [M] is short for [MASK], denoting the label
word’s prediction at the masked position of the
template.

Then, if multiple label words are used to con-
tribute to a single label, the predicted probability of
the label is defined by marginalizing the probability
of predicting all the label words, i.e.,

p(Y=y|x)=
∑
v∈VY

p(Y=y,[M]=v|x). (13)

Since the prediction of Y is independent of x
given v, we can write Equation (13) into∑

v∈VY

p(Y = y|[M]=v)p([M]=v|x)

=
∑
v∈VY

p(Y = y|[M]=v)PM([M]=v|xp).
(14)

Using the Bayes Theorem and assuming a bal-
anced classification problem, Equation (14) can be
transformed into
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Shot Method AG’s News DBPedia Yahoo Amazon IMDB

5
SOFT 82.8 ± 2.7 (84.3) 97.0 ± 0.6 (97.2) 61.8 ± 1.8 (63.1) 93.2 ± 1.6 (94.2) 91.6 ± 3.4 (93.9)

SOFT w.o. M 63.4 ± 11.3 (64.7) 82.1 ± 5.9 (86.1) 24.5 ± 6.2 (27.2) 79.2 ± 10.5 (85.5) 83.6 ± 11.5 (93.4)

10
SOFT 85.0 ± 2.8 (86.7) 97.6 ± 0.4 (97.8) 64.5 ± 2.2 (65.0) 93.9 ± 1.7 (93.9) 91.8 ± 2.6 (93.0)

SOFT w.o. M 77.4 ± 4.8 (79.1) 94.9 ± 2.5 (95.9) 42.6 ± 8.3 (48.1) 92.9 ± 2.0 (94.0) 88.7 ± 9.7 (93.8)

Table 4: Pilot experiment on soft verbalizer justifies the need of human (expert) knowledge into the verbalizer.
SOFT is the soft verbalizer with class name and SOFT w.o. M is the variant without the manual verbalizer.

∑
v∈VY

p([M]=v|Y = y)p(Y = y)

p([M]=v)
PM([M]=v|xp)

∝
∑
v∈VY

p([M]=v|Y = y)

p([M]=v)
PM([M]=v|xp). (15)

Now, the prediction probability of the label is
composed of three parts.

(1) The first part p(v|Y = y) is the probability of
predicting the specific label word v given the class
label y. Intuitively, if a label word is relevant to
label y, this term will be assigned a high probability.
In KPT , the Relevance Refinement estimate this
probability using a quantized objective, i.e., if a
relevance score exceeds the threshold 1, it will be
maintained, otherwise, it will be filtered. On the
other hand, Learnable Refinement estimates this
probability using continuous weights.

(2) The second part is p([M]=v) in the denom-
inator. This term is actually the prior probability
of label words v, which is estimated by our Con-
textualized Calibration. Previous works also try
to approach this term using a context-free man-
ner (Holtzman et al., 2021; Zhao et al., 2021).

(3) The last term PM([MASK]= v|xp) is the
probability of the label words v predicted by the
PLM, which is the only component in most works
such as Manual Verbalizers (Schick and Schütze,
2021a), yielding a sub-optimial solution compared
to KPT .

Verbalizers with multiple label words for a class
label can all be formalized into this framework once
they use Equation (13) as their backbone hypothe-
sis. However, to the best of our knowledge, KPT is
the first to combine all of the three components to
form a powerful verbalizer.

C Practical Issues of Refinement

In this section, we detail the refinement process by
making some practical modifications to the meth-
ods in § 3.3.

Frequency Refinement. For Frequency Refine-
ment, since the absolute value distribution of the
contextualized prior probability may be different
for each task, determining a specific threshold of
the contextualized prior probability may be tricky
and elusive. We use a ranking-based threshold, i.e.,
we filter the label words that appear in the lower
half of the contextualized prior probability.

Relevance Refinement. For Relevance Refine-
ment, we observe that in the classification task with
only a few classes, it’s better to provide a stricter
criterion to ensure that the relevance scores of a la-
bel word to any other class is lower than the score
to the belonging class, i.e., maximum in the term of
IDF-score is preferred. To keep a unified criterion,
we use a norm-based IDF-score.

Rd(v)=r(v, f(v))(
|Y| − 1∑

y∈Y,y ̸=f(v) r(v, y)
d
)1/d

(16)
where

d =
C

|Y| − 2 + ϵ
+ 1, C > 0. (17)

This criterion will approximate the maximum value
in {r(v, y)|y ∈ |Y|, y ̸= f(v)} in classification
with only a few labels, and revert to the mean score
in Equation (6) when conducting classification with
many labels. We take C = 10 (without trial and
error) in the experiments. And 0 < ϵ ≪ 1 is a
small number to prevent numerical error.

D Further Analyses and Ablation Studies

D.1 Calibration and Contextualized
Calibration.

In fine-tuning, calibration has been studied un-
der the topic of prediction confidence and out-of-
distribution detection (Kong et al., 2020). Recently,
it got renascent attention in prompt learning (Zhao
et al., 2021; Holtzman et al., 2021). In prompt
learning, the PLM has a natural tendency to pre-
dict one word over another word regardless of the

2237



70

80

90

Zero-shot Performance vs Support Set Size

0 20 50 100 200 300
Size

56

58

60

62
agnews
dbpedia
yahoo
amazon
imdb

Ac
c

Figure 3: Support set size w.r.t. zero-shot performance.
The points at size=0 are the performances of PMIDC.

real sentence input. For example, GPT-3 prefers to
predict “positive” over “negative” given “N/A” as
the input sentence (Zhao et al., 2021). Therefore
the calibration is crucial (see Table 2) when no
posterior optimization is conducted, i.e., in zero-
shot learning. Existing methods such as PMIDC
propose only using the empty template without fill-
ing the template with the instances in the corpus,
for example, “A [Mask] question :”, to produce
the calibration logits. Our proposed Contextualized
Calibration utilizes a limited amount of unlabeled
support data to yield significantly better results.
However, since we target the data-scarce scenario,
we study in detail the amount of unlabeled data
necessary to produce a satisfying calibration result.
In Figure 3, we draw the performance of KPT -
RR with different support set sizes |C̃|. We also
draw the performance of PMIDC on the |C̃| = 0 for
comparison.

From Figure 3, we find that |C̃| ∼ 50 is enough
to yield a satisfying calibration. Contextualized
calibrate is more effective in classification with
many classes, while calibrate without the context
is effective in classification with few classes.

In addition, we must point out that if we have a
set of sentences to classify in real-world scenarios,
we can use these sentences themselves as the sup-
port set to conduct more accurate Contextualized
Calibration.

D.2 Supervised Data Ease the Need for
Calibration.

Although calibration is crucial for the zero-shot
setting, we do not perform calibration for the few-
shot setting because we assume that the posterior
probability of the label words can be trained to
the desired magnitude with only a few training

instances. We also do not perform Frequency Re-
finement for few-shot learning due to the same as-
sumption. To verify the assumption empirically, we
add both Contextualized Calibration and Frequency
Refinement to KPT and test the performance under
different settings. The results are shown in Table 5.
The performance comparison to KPT without CC
and FR in Table 3 are shown using up arrows and
down arrows. We can see that except in Yahoo,
the improvement is not consistent for even nega-
tive, which supports our assumption that the need
for calibration is greatly eased with the supervised
input data.

D.3 How to Handle the OOV Label Words?

Since the knowledgeable verbalizer is expanded
using external resources which may not be tailored
for the vocabulary of PLM. Thus, many label words
are out-of-vocabulary (OOV) and are split into mul-
tiple tokens by the tokenizer. For these words, as
mentioned in § 3.3, we average the prediction
probability of each token in the single [MASK] po-
sition, which may not be very reasonable at the first
glance. Therefore, we conduct an ablation study
that whether forcing the label words to be a single
token in the vocabulary of the PLM leads to better
performance. The results under different shots are
shown in Table 6. Surprisingly, making the single-
token restriction does not yield stable improvement,
instead, in many cases, the performance degrades
by minor margins. Therefore we conclude that
our method to handle OOV label words that are
split by the tokenizer into multiple tokens is simple
yet reasonable. More importantly, the label words
expanded by the knowledge bases but not in the
PLM’s vocabulary can serves as good label words
in prompt tuning as well.

D.4 Visualization of the Refinement Process.

In this section, we report the number of label words
that remained after Frequency Refinement and Rel-
evance Refinement process. As we can see, these
refinement methods remove a large fraction of la-
bel words while retaining the ones that are most
informative. However, even the fewest number
of remaining label words exceeds 100, which is
far more than the number of label words in the
previous works (Schick et al., 2020). The broad
coverage of label words contributes to the success
of KPT .
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Shot Method AG’s News DBPedia Yahoo Amazon IMDB

1 KPT + CC + FR 83.4
y± 4.0 (84.6) 94.0

x± 2.0 (95.7) 63.3
x± 2.0 (64.9) 93.2 ± 1.2 (94.0) 92.1

y± 3.2 (93.8)

5 KPT + CC + FR 84.6
y± 1.3 (85.1) 97.3

x± 0.3 (97.4) 67.3
x± 1.1 (67.7) 94.0

x± 1.2 (94.7) 92.7 ± 1.6 (93.1)

10 KPT + CC + FR 85.9
y± 1.7 (86.7) 98.1

x± 0.2 (98.2) 68.0 ± 1.1 (68.6) 93.3
y± 1.8 (93.7) 92.9 ± 1.8 (93.6)

20 KPT + CC + FR 87.3
x± 0.8 (87.6) 98.0

y± 0.4 (98.2) 69.1
x± 0.7 (69.5) 93.5

y± 1.1 (93.9) 93.1 ± 1.3 (93.5)

Table 5: Results of Contextualized Calibration and Frequency Refinement on few-shot experiments. The green up
arrow

xmeans the result is higher than KPT in Table 3, and the red down arrow
ymeans the results is lower than

KPT in Table 3.

Shot Method AG’s News DBPedia Yahoo Amazon IMDB

0 KPT + ST 84.9
x± 1.0 (86.3) 81.0

y± 4.3 (85.2) 62.7
x± 1.1 (64.4) 92.8 ± 1.2 (94.7) 91.5

y± 2.8 (94.1)

1 KPT + ST 83.4
y± 3.9 (84.2) 94.0

x± 1.8 (95.8) 62.5
y± 2.3 (63.5) 93.3

x± 1.4 (94.1) 92.1
y± 3.5 (93.6)

5 KPT + ST 84.7
y± 1.8 (85.4) 97.1 ± 0.5 (97.2) 66.8

y± 1.0 (67.3) 93.3
y± 2.1 (93.8) 93.1

x± 1.4 (93.3)

10 KPT + ST 86.3 ± 1.5 (86.8) 98.0 ± 0.2 (98.1) 67.6
y± 0.9 (67.9) 94.0

x± 1.0 (94.1) 92.7
y± 1.8 (93.6)

20 KPT + ST 87.2
y± 1.1 (87.6) 97.9

y± 0.4 (98.1) 68.6
y± 0.7 (69.1) 93.5

x± 1.8 (94.0) 92.9
y± 1.2 (93.4)

Table 6: Results of restricting the expanded label word to be a single token in the PLM’s vocabulary, where ST
denotes “single token”. The green up arrow

xmeans the results is higher than KPT in Table 3, and the red down
arrow

ymeans the results is lower than KPT in Table 3.
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Figure 4: The number of remaining label words after
Frequency Refinement and Relevance Refinement.

D.5 Potential Usage without External KB.

Although KBs are ubiquitous in natural language
processing, there are cases that no readily available
KBs can be found for specific tasks. For these
tasks, if we have enough unlabeled corpus, we can
use the methods proposed by LOTClass (Meng
et al., 2020) to mine potential label words from the
corpus. More specifically, LOTClass (Meng et al.,
2020) uses a self-supervised objective to train the
PLM to extract the topic-related words from the
whole unlabeled training corpus. Experiments that
combine KPT with LOTClass are beyond the scope
of our work, but we believe the combination of the
two can be very effective.

E Datasets and Templates

We carry out experiments on three topic classifica-
tion datasets: AG’s News (Zhang et al., 2015), DB-
Pedia (Lehmann et al., 2015), and Yahoo (Zhang
et al., 2015), and two sentiment classification
datasets: IMDB (Maas et al., 2011) and Ama-
zon (McAuley and Leskovec, 2013). The statistics
of the datasets are shown in Table 7.

Name Type # Class Test Size

AG’s News Topic 4 7600
DBPedia Topic 14 70000

Yahoo Topic 10 60000
Amazon Sentiment 2 10000
IMDB Sentiment 2 25000

Table 7: The statistics of each dataset.

Due to the rich expert knowledge contained, the
manual templates are proven to be competitive
with or better than auto-generated templates (Gao
et al., 2021) even though they are simpler to be
constructed. Therefore we use manual templates
in our experiments. Manual templates are also
more applicable than auto-generated templates in
the zero-shot setting. To mitigate the influence of
different templates, we test KPT under four manual
templates that are either introduced by (Schick and
Schütze, 2021a) or tailored to fit the dataset for
each experimental configuration. The templates for
each dataset is listed below.
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AG’s News. AG’s News is a news’ topic clas-
sification dataset. In this dataset, we follow
PET (Schick and Schütze, 2021a) to design the
templates. However, their best performance pattern
T1(x) = “[MASK] news : x” requires the [MASK]
token to be capitalized, which is not suitable for the
label words in KB. And some of their templates are
not informative and yield low performances. There-
fore, we define four slightly changed templates:

T1(x) = A [MASK] news : x

T2(x) = x This topic is about [MASK].

T3(x) = [ Category : [MASK] ] x

T4(x) = [ Topic : [MASK] ] x

DBPedia. In a DBPedia sample, we are
given a paragraph b paired with a title a, in
which the title is the subject of paragraph. The
task is to determine the topic (or the type) of
the subject. Different from other topic classifi-
cations, the paragraph can emphasize topics that
are different from the title. For example, in a
paragraph about an audio company, the main
paragraph talks about music, albums, etc., but the
correct label is “company” rather than “music”.
Therefore, we define the following templates:

T1(a,b) = a b ã is a [MASK] .

T2(a,b) = a b In this sentence, ã is a [MASK] .

T3(a,b) = a b The type of ã is [MASK].

T4(a,b) = a b The category of ã is [MASK].

where ã means removing the last punctuate in the
title.

Yahoo. Yahoo is a topic classification dataset
about the questions raised in yahoo website (Zhang
et al., 2015). We use the same templates as AG’s
News, except that we change the word “news” into
“question” in the T1(x):

T1(x) = A [MASK] question : x

T2(x) = x This topic is about [MASK].

T3(x) = [ Category : [MASK] ] x

T4(x) = [ Topic : [MASK] ] x

IMDB. IMDB is a sentiment classifi-
cation dataset about movie reviews. Sim-
ilar to the template defined in (Schick
and Schütze, 2021a) for sentiment classi-

fication, we define the following template:

T1(x) = It was [MASK] . x

T2(x) = Just [MASK] ! x

T3(x) = x All in all, it was [MASK].

T4(x) = x In summary, the film was [MASK].

Amazon. Amazon is another sentiment classi-
fication dataset , we define the following template:

T1(x) = It was [MASK] . x

T2(x) = Just [MASK] ! x

T3(x) = x All in all, it was [MASK].

T4(x) = x In summary, it was [MASK]”.

Since the test set of amazon is unnecessarily
large for efficient testing, we randomly sample
10,000 samples from the 400,000 test samples to
test, which is proven to have tiny influence on the
performance in our pilot experiments.

F Experimental Settings

We list the hyper-parameters in Table 8. Most of
the hyper-parameters are the default parameters
from Huggingface Transformers6.

Hyper-parameter Dataset Value

truncate length AG’s News, DB-
Pedia, Yahoo

128

truncate length Amazon, Imdb 512
warmup steps All 0
learning rate All 3e-5
maximum epochs All 5
adam epsilon All 1e-8

Table 8: Hyper-parameter settings.

For soft verbalizer, we use a learning rate of 3e−
4 to its soft label words’ embeddings to encourage
a faster convergence.

6https://huggingface.co/transformers/
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