@inproceedings{patil-etal-2022-overlap,
title = "Overlap-based Vocabulary Generation Improves Cross-lingual Transfer Among Related Languages",
author = "Patil, Vaidehi and
Talukdar, Partha and
Sarawagi, Sunita",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.18/",
doi = "10.18653/v1/2022.acl-long.18",
pages = "219--233",
abstract = "Pre-trained multilingual language models such as mBERT and XLM-R have demonstrated great potential for zero-shot cross-lingual transfer to low web-resource languages (LRL). However, due to limited model capacity, the large difference in the sizes of available monolingual corpora between high web-resource languages (HRL) and LRLs does not provide enough scope of co-embedding the LRL with the HRL, thereby affecting the downstream task performance of LRLs. In this paper, we argue that relatedness among languages in a language family along the dimension of lexical overlap may be leveraged to overcome some of the corpora limitations of LRLs. We propose Overlap BPE (OBPE), a simple yet effective modification to the BPE vocabulary generation algorithm which enhances overlap across related languages. Through extensive experiments on multiple NLP tasks and datasets, we observe that OBPE generates a vocabulary that increases the representation of LRLs via tokens shared with HRLs. This results in improved zero-shot transfer from related HRLs to LRLs without reducing HRL representation and accuracy. Unlike previous studies that dismissed the importance of token-overlap, we show that in the low-resource related language setting, token overlap matters. Synthetically reducing the overlap to zero can cause as much as a four-fold drop in zero-shot transfer accuracy."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="patil-etal-2022-overlap">
<titleInfo>
<title>Overlap-based Vocabulary Generation Improves Cross-lingual Transfer Among Related Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vaidehi</namePart>
<namePart type="family">Patil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Partha</namePart>
<namePart type="family">Talukdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunita</namePart>
<namePart type="family">Sarawagi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained multilingual language models such as mBERT and XLM-R have demonstrated great potential for zero-shot cross-lingual transfer to low web-resource languages (LRL). However, due to limited model capacity, the large difference in the sizes of available monolingual corpora between high web-resource languages (HRL) and LRLs does not provide enough scope of co-embedding the LRL with the HRL, thereby affecting the downstream task performance of LRLs. In this paper, we argue that relatedness among languages in a language family along the dimension of lexical overlap may be leveraged to overcome some of the corpora limitations of LRLs. We propose Overlap BPE (OBPE), a simple yet effective modification to the BPE vocabulary generation algorithm which enhances overlap across related languages. Through extensive experiments on multiple NLP tasks and datasets, we observe that OBPE generates a vocabulary that increases the representation of LRLs via tokens shared with HRLs. This results in improved zero-shot transfer from related HRLs to LRLs without reducing HRL representation and accuracy. Unlike previous studies that dismissed the importance of token-overlap, we show that in the low-resource related language setting, token overlap matters. Synthetically reducing the overlap to zero can cause as much as a four-fold drop in zero-shot transfer accuracy.</abstract>
<identifier type="citekey">patil-etal-2022-overlap</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.18</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.18/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>219</start>
<end>233</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Overlap-based Vocabulary Generation Improves Cross-lingual Transfer Among Related Languages
%A Patil, Vaidehi
%A Talukdar, Partha
%A Sarawagi, Sunita
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F patil-etal-2022-overlap
%X Pre-trained multilingual language models such as mBERT and XLM-R have demonstrated great potential for zero-shot cross-lingual transfer to low web-resource languages (LRL). However, due to limited model capacity, the large difference in the sizes of available monolingual corpora between high web-resource languages (HRL) and LRLs does not provide enough scope of co-embedding the LRL with the HRL, thereby affecting the downstream task performance of LRLs. In this paper, we argue that relatedness among languages in a language family along the dimension of lexical overlap may be leveraged to overcome some of the corpora limitations of LRLs. We propose Overlap BPE (OBPE), a simple yet effective modification to the BPE vocabulary generation algorithm which enhances overlap across related languages. Through extensive experiments on multiple NLP tasks and datasets, we observe that OBPE generates a vocabulary that increases the representation of LRLs via tokens shared with HRLs. This results in improved zero-shot transfer from related HRLs to LRLs without reducing HRL representation and accuracy. Unlike previous studies that dismissed the importance of token-overlap, we show that in the low-resource related language setting, token overlap matters. Synthetically reducing the overlap to zero can cause as much as a four-fold drop in zero-shot transfer accuracy.
%R 10.18653/v1/2022.acl-long.18
%U https://aclanthology.org/2022.acl-long.18/
%U https://doi.org/10.18653/v1/2022.acl-long.18
%P 219-233
Markdown (Informal)
[Overlap-based Vocabulary Generation Improves Cross-lingual Transfer Among Related Languages](https://aclanthology.org/2022.acl-long.18/) (Patil et al., ACL 2022)
ACL