
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3253 - 3267

May 22-27, 2022 c©2022 Association for Computational Linguistics

Adaptive Testing and Debugging of NLP Models

Marco Tulio Ribeiro∗
Microsoft Research

marcotcr@microsoft.com

Scott M. Lundberg∗
Microsoft Research

scott.lundberg@microsoft.com

Abstract

Current approaches to testing and debugging
NLP models rely on highly variable human
creativity and extensive labor, or only work for
a very restrictive class of bugs. We present
AdaTest, a process which uses large scale lan-
guage models (LMs) in partnership with hu-
man feedback to automatically write unit tests
highlighting bugs in a target model. Such bugs
are then addressed through an iterative text-fix-
retest loop, inspired by traditional software de-
velopment. In experiments with expert and
non-expert users and commercial / research
models for 8 different tasks, AdaTest makes
users 5-10x more effective at finding bugs than
current approaches, and helps users effectively
fix bugs without adding new bugs.

1 Introduction

Although NLP models are often underspecified
and exhibit various generalization failures, finding
and fixing such bugs remains a challenge. Cur-
rent approaches include frameworks for testing
(e.g. CheckList; Ribeiro et al., 2020), error analy-
sis (Wu et al., 2019), or crowdsourcing (e.g. Dyn-
abench; Kiela et al., 2021), all of which depend
on highly variable human creativity to imagine
bugs and extensive labor to instantiate them. Out
of these, only crowdsourcing can potentially fix
bugs when enough data is gathered. On the other
hand, fully automated approaches such as perturba-
tions (Belinkov and Bisk, 2018; Prabhakaran et al.,
2019), automatic adversarial examples (Ribeiro
et al., 2018), and unguided data augmentation (Yoo
et al., 2021; Wang et al., 2021) are severely re-
stricted to specific kinds of problems (e.g. Ribeiro
et al. (2018) only deal with inconsistent predictions
on paraphrases). Despite their usefulness, current
approaches do not allow a single user to easily
specify, discover, and fix undesirable behaviors.

∗ Equal contribution, author order chosen by casting lots.

LM suggests tests

User �lters and organizes

Test suggestions
Test tree

Target
model

Fix tests

(Re)test model

Testing Loop

Debugging Loop

Figure 1: AdaTest consists of two loops: A Testing
Loop that generates and organizes tests optimized for
the target model, and a Debugging Loop that iteratively
refines the target model based on test failures.

In this work, we present Adaptive Testing (AdaT-
est), a process and tool1 that leverages the comple-
mentary strengths of humans and large scale lan-
guage models (LMs) to find and fix bugs in NLP
models. The LM is tasked with the slow “creative”
burden (Kahneman, 2011) of generating a large
quantity of tests adaptively targeted against the
model being tested, while the user steers the LM
by only selecting high quality tests and organiz-
ing them into semantically related topics – which
drastically improves LM generation and guides it
towards areas of interest.

In an inner Testing Loop (Figure 1, unrolled in
Figure 2), users start with a set of unit tests in a
topic. The LM then generates many similar tests
that are designed to highlight bugs in the target
model, of which the user only reviews the top few
failing or near-failing tests (Figure 2A), adding
valid tests to the current topic or organizing them
into additional sub-topics (Figure 2B). These user-

1https://github.com/microsoft/adatest

3253

https://github.com/microsoft/adatest

filtered tests are included in the LM prompt for the
next round of suggestions, nudging them toward the
intersection between user interest and model failure.
Repeating the Testing Loop results in hill climbing
behavior, where even when users cannot find model
failures on their own, they can start from a small
set of passing tests and quickly iterate with the
LM to produce a large set of tests that reveal model
failures. Once enough bugs are discovered, the user
engages in an outer Debugging Loop (Figure 1),
performing an operation to fix bugs (e.g. finetuning
on failing tests), and (crucially) testing the model
again to verify that new bugs were not introduced.
AdaTest can be seen as an application of the test-
fix-retest loop from software engineering to NLP.

We demonstrate the usefulness and generality
of AdaTest by having users with diverse skill sets
find and fix bugs in state-of-the-art models for a
wide variety of tasks and domains. In controlled
user studies, expert users consistently discovered
∼5x more bugs per minute with AdaTest (com-
pared to CheckList), while users with no technical
background discovered ∼10x more (compared to a
tool similar to Dynabench). Our experiments indi-
cate AdaTest’s Debugging Loop reliably fixes bugs
without introducing new ones, in contrast to other
forms of data augmentation (templates, counterfac-
tuals (Wu et al., 2021), manual GPT-3 prompting).
Finally, we present case studies where experts and
non-experts use AdaTest “in the wild” on commer-
cial models, finding and fixing a large quantity of
previously unknown bugs (e.g. resulting in an 11.1
F1 improvement over expert GPT-3 augmentation).

2 Adaptive Testing

The fundamental unit of specification in AdaTest is
a test, defined as an input string or pair and an ex-
pectation about the behavior of the model (Ribeiro
et al., 2020). The expectation can specify what the
output should or should not be (e.g. for sentiment
analysis f(“This is so great!!”) = pos,
f(“It’s not bad”) , neg), a property
on perturbations such as invariance (e.g.
f(“good”) = f(“good.”)), or a property of the
output (e.g. substring containment in translation;
fen-to-pt(“The cake’s icing”) + “cereja”,
or the output of a classifier c(·) for text genera-
tion; c(fgen(“Immigrants are”)) , toxic).
When a test is applied to a model, it produces
a test failure score, such that failing tests have
high scores, while passing tests have low scores.

LM
suggests

f(“I am tired of being silenced”) ≠ neg
f(“I am a racial minority”) ≠ neg

...

...

f(“I am a black woman”) ≠ neg
f(“I am an Asian man”) ≠ neg

f(“My friend is a Christian pastor”) ≠ neg

Sensitive

Sensitive

Racial

Immigration

f(“I am part of a racial minority”) ≠ neg
f(“I am a racial minority”) ≠ neg

f(“I am an undocumented person”) ≠ neg
f(“I am an undocumented woman”) ≠ neg

f(“I can’t keep living in fear”) ≠ neg
f(“I am an undocumented new hire”) ≠ neg

Sensitive/Immigration
f(“I am an undocumented new hire”) ≠ neg

f(“I am for refugee immigration”) ≠ neg
f(“I am an undocumented person”) ≠ neg

...

User adds
to the

subtopic

LM
suggests

from topic
user opens

LM
suggests

from topic
user opens

User �lters
& organizes
User �lters

& organizes

Pass | Fail

✔

✘

✔

✘

AA

BB

DD

CC

Figure 2: The Testing Loop cycles between the LM
generating test suggestions, the model scoring the sug-
gestions, and the user accepting (✔) and organizing
them. In this 3-way sentiment analysis example, test
failure score is P(negative), and a test fails (red score)
when the prediction is “negative”. As the user filters
and organizes (B , D), the LM hillclimbs towards sug-
gesting valid tests with high scores (A, C).

The score may be a binary pass/fail indicator,
or a continuous indicator of how strongly a test
passes/fails, e.g. in Figure 2 the score is the
model’s margin of confidence for class “negative”.

To evaluate model behavior at varying levels
of abstraction, tests are organized into a test tree
where each internal node is a topic. For exam-
ple, with the 3-way Sentiment Analysis model
in Figure 2, we start with the /Sensitive topic
within the test tree, and organize it further by
defining as children the subtopics /Sensitive/Racial
and /Sensitive/Immigration, each containing re-
lated tests and subtopics. These flexible test trees
are built out by the user as they explore model be-
havior. This allows for fine grained evaluation and
helps both the user and the LM focus, by testing
one topic at a time. They are also persistent sets of
unit tests that can be applied to new model versions,
iteratively updated, and shared with the community
as starting points for testing other models.

3254

2.1 The Testing Loop

Writing tests that expose bugs in NLP models is
hard for both humans and LMs, but they have com-
plementary strengths and weaknesses. LMs can
generate and run hundreds of test proposals based
on existing tests, but these tests are often invalid
and don’t represent the behavior expected by the
user. In contrast, humans can quickly perceive if a
test is valid or invalid, but can write new tests only
slowly (Kahneman, 2011), and with high variabil-
ity depending on user expertise and creativity. The
Testing Loop is designed to leverage these comple-
mentary strengths through an iterative optimization
process: at each iteration, the LM2 proposes a set of
new tests for a topic, and the user accepts those that
are valid, high scoring, and within the topic’s scope.
These accepted tests are then used by the LM to
generate the next round of suggestions. This loop
is similar in spirit to Markov-Chain Monte-Carlo
(Hastings, 1970), with the LM as the proposal func-
tion and the user accepting / rejecting samples.

Test proposals for a topic are generated by con-
catenating several tests (7 by default) from the topic
into a prompt to the LM, selected based on test
score, diversity, and randomization (details in Ap-
pendix A), such that high scoring tests tend to be
placed later in the prompt, where they have more
impact on the output (Zhao et al., 2021). When
there are not enough tests in the current topic, we
use tests from nearby topics, prefix these demon-
stration tests with their topic location, and ask the
LM to generate a completion conditioned on the
current topic. This allows for zero shot generation
in new empty topics when related topics already
exist in the test tree. For a given prompt, we sample
a large number of independent completions (typi-
cally 25-150) from the LM as test proposals, which
are run through the target model, sorted by test
failure score, and presented to the user, such that
users typically inspect only the top few likely test
failures. The user then does an organization round,
where they accept good test suggestions, and po-
tentially reorganize the hierarchy locally, e.g. by
grouping tests into subtopics (which can also be
auto-generated by the LM). Because the user rarely
writes tests manually, and only looks at a small
fraction of the tests generated by the LM, they can
explore a vastly larger space of tests than would be
possible with manual tools. Because the user ex-
plicitly labels tests as valid, the LM does not need

2We use GPT-3 (Brown et al., 2020), but support others.

to be highly accurate in its test generation – it just
needs to be good enough to ensure a reasonable
fraction of top-scoring generated tests are valid.

An example unrolled Testing Loop is shown in
Figure 2, where we initialize the /Sensitive topic
with test cases from a CheckList (Ribeiro et al.,
2020) that did not identify failures of this type on
commercial models. A round of LM test sugges-
tions, however, quickly identifies notable failures in
Microsoft’s Text Analytics (q), one of the models
tested by Ribeiro et al. (2020), such as predicting
“I am a racial minority” as negative (Figure 2A).
In Figure 2B the user ignores invalid tests (e.g.
f(“I’m tired of being silenced”) , neg
has the wrong expectation) and organizes valid sug-
gestions into the new subtopics /Sensitive/Racial
and /Sensitive/Immigration. For the next round of
the Testing Loop (Figure 2C), the user chooses
/Sensitive/Immigration as the focus topic (it only
has borderline failures), and gets LM suggestions
(Figure 2D) to find higher scoring failures. The
iterative nature of the Testing Loop allows the user
to give constant feedback, nudging the LM towards
high quality tests with high test score. Suggestions
help the user both explore (finding new subtopics,
Figure 2B) and exploit (hill-climb towards high
scoring tests, as in Figure 2C). The organization
step keeps the LM on-topic, with a hierarchy that
adapts to model behavior rather than being fixed
ahead of time (Kulesza et al., 2014).

A few rounds of AdaTest reveals many sensitive
subtopics with a large number of positive/neutral
examples predicted as “negative” with high con-
fidence, including the ones in Figure 2 and oth-
ers such as /Sensitive/Homeless (e.g. “I opened a
homeless shelter once.”), /Sensitive/Survivor (e.g.
“I am a cancer survivor”), and /Sensitive/Disability
(e.g. “I am hard of hearing”).

2.2 The Debugging Loop

In the outer Debugging Loop (Figure 1, unrolled
in Figure 3) the user fixes bugs discovered in the
Testing Loop. We do this by finetuning the model
on the tests, but other strategies such as collecting
more data or adding constraints are also possible.
Adding the tree to training data in the fix step “in-
validates” it for testing, which is not an issue due
to the lightweight nature of the Testing Loop (but
would be for tests that are costly to produce, e.g.
CheckList). The re-test adaptation (i.e. running
the Testing Loop again) is critical, as the process

3255

Pass | Fail

f(“I am an undocumented new hire”) ≠ neg
f(“I am for refugee immigration”) ≠ neg

...

f(“I am an undocumented new hire”) ≠ neg
f(“I am for refugee immigration”) ≠ neg

...

Neutral immigration statements should not be predicted as negative.

f(“I am against all deportations”) = neg
f(“I oppose the Muslim ban”) = neg

...

Neutral immigration statements are now corrected.

Fix tests

Negative immigration statements are now predicted as neutral.

Run
testing

loop

f(“I am for refugee immigration”) ≠ neg
f(“I am against all deportations”) = neg

...

Negative and neutral statements are now predicted correctly.

Fix tests

...

Run
testing

loop

Figure 3: Shortcuts added during an iteration of the De-
bugging Loop are found and fixed by future iterations.

of fixing a bug often overcompensates, introducing
shortcuts or bugs in the initial rounds. For exam-
ple, finetuning a RoBERTa-Large sentiment model
on the test tree in Figure 2 inadvertently results
in a model that often predicts “neutral” even on
very positive / negative sentences about immigra-
tion (Figure 3; “I oppose the muslim ban”). An-
other model might be “fixed” for the discovered
subtopics, but still broken on related subtopics (e.g.
“I have a work visa”). The user does not have to
exhaustively identify every possible shortcut or im-
balance ahead of time, since AdaTest adaptively
surfaces and fixes whatever bugs are introduced in
the next rounds of testing and debugging. Thus,
the Debugging Loop serves as a friendly adversary,
pushing the boundaries of the current “specifica-
tion” until a satisfactory model is produced.

2.3 Adapting test trees to new models

Even though AdaTest is adaptive to the specific
model being tested, we observe that existing AdaT-
est trees are typically good starting points when
testing new models. To illustrate this, we run
the test tree in Figure 2 through Google Cloud’s
Natural Language (), and observe that most of
the topics immediately reveal a variety of fail-
ures (with no adaptation). One exception is the
/Sensitive/Immigration topic, on which has no
immediate failures. However, a single round of sug-
gestions surfaces within-topic failure patterns (e.g.
“I am an immigrant myself”, “I am an immigrant,
my parents are not.” are both predicted as “nega-

tive”), which are easily exploited in further rounds.
This augmented topic does not reveal any failures
on Amazon’s Comprehend (À), but a single round
of suggestions reveals related bugs (e.g. “I am a
DREAMer”, “I am a DACAmented educator”) that
can be expanded in further rounds.

In Figure 4 we show a much more extreme form
of adaptation – we start with a test tree from q
Sentiment Analysis, and adapt a few of its topics
to Translate (English) Portuguese) English) by
running a few rounds of the Testing Loop. While
model outputs are different and thus test expecta-
tions need to be adjusted, certain aspects of the
input are relevant across tasks (e.g. Negation, Sen-
sitive inputs), and having a starting set of tests
makes it easy to bootstrap the Testing Loop. We
then switch the model to q Translate and adapt
this new topic tree to both (English) Portuguese
) English) and (English) Chinese) English). In
every case, we easily discover a variety of in-topic
bugs, even though these are mature products and
we use a small toy test tree. This illustrates how
AdaTest makes it easy to adapt an existing tree to
a new model, even if the test tree was organized
using a different model – or even a different task.

3 Evaluation

We present controlled user studies on the Testing
Loop with both expert and non-expert users (3.1),
followed by controlled experiments on the Debug-
ging Loop (3.2). Finally, we present case studies
where AdaTest is used “in the wild” (3.3).

3.1 Testing Loop

Expert testing We ran a user study to quantita-
tively evaluate if AdaTest makes experts better at
writing tests and finding bugs in models, when com-
pared to the SOTA in NLP testing (CheckList).3

We recruited ten participants with a background
in ML and NLP from industry and academia, and
asked them to test two models: 1) a commercial
sentiment classifier (q), and 2) GPT-2 (Radford
et al., 2019) used for next word auto-complete.

Users completed eight separate tasks, where
each task is a unique combination of a model (sen-
timent or auto-complete), topic (see Figure 5), and
tool (AdaTest or CheckList). For each task, partici-
pants start with a set of four (passing) sample tests

3To control for differences due to interface design, we
created a matching web interface for CheckList providing
real-time model scoring for tests.

3256

Se
ns

iti
ve

Ra
ci

al

I am a Nigerian woman of color

I am a Latino person of color

I identify as a racial minority in the US 我认同美国是少数族裔

Eu sou uma pessoa de cor latina

Eu sou uma nigeriana de cor

I agree that america is a minority

I'm a latin person

I'm a Nigerian by heart

Im
m

ig
. Immigrants with healthcare

I am a legal immigrant

I want to stay in the U.S. to get education 我想留在美国去教育

eu sou um imigrante legal

Imigrantes com saúde

I want to stay in America to educate

i am a cool immigrant

N
eg

at
io

n I can't say anything else than this place sucks.

I don't recommend this dish.

I can't believe how good these wontons are 真不敢相信这些鬼子有多好

Eu não recomendo este prato.

Não posso dizer nada além desse lugar.

I can't believe how good these ghosts are

I highly recommend this dish.

I can't say anything but this place.

Cl
ea

r
Po

si
tiv

es The icing on this cake is delicious

en-pt-en

en-pt-en

en-zh-en

This burger is out of the park!

Don't forget to try the beans, they are delicious! 别忘了试试豆子，它们很好吃！

Este hambúrguer está fora de moda!

A cereja deste bolo é deliciosa

Don't forget to try beans.

This burger is out of style!

The cherry of this cake is delicious

Input Translation Back translation

healthy immigrants

they are delicious!

en-pt-en

en-pt-en

en-zh-en

en-pt-en

en-pt-en

en-zh-en

en-pt-en

en-pt-en

en-zh-en

of color

接受

Correct translation Incorrect translationTest tree adaptation

Figure 4: A portion of a test tree with representative examples, adapted from q Sentiment Analysis to Translate,
then further adapted to q Translate for different languages. Errors and omissions annotated by native speakers.

Au
to
-c
om

pl
et
e

Se
nt
im

en
t

Figure 5: Per-topic model failures per minute (invalid
tests and near-duplicates are filtered to avoid double
counting). Experts found ∼5x more failures with AdaT-
est on all topics. Error bars represent the 10th and 90th
percentiles over bootstrap re-samples of participants.

inside a specific topic, and try to find as many on-
topic model failures as possible within 8 minutes.
The ordering between tools is randomized, while
the order of model and topic is fixed (Figure 5).

We present the average number of discovered
model failures per minute in Figure 5, where we
observe a ∼5-fold improvement with AdaTest, an
effect persistent across models and users. Among
all 80 user+task scenarios, a user found less failures
with AdaTest in only one case, and by a single test.

Interestingly, Ribeiro et al. (2020) had tests in the
same topics, with very low error rates for the same
model (4% for a test that included Clear Positives,
0% for Negated positives), while study participants
were able to find many failures, e.g. “I really like
this place” (predicted as neutral), “Everything was
freaking sensational” (predicted as negative), “I
didn’t think the food was that good” and “I couldn’t
wait to leave” (both predicted as positive). Qual-

itatively, users explored a much wider variety of
behaviors with AdaTest, even considering Check-
Lists’ template capabilities. When the burden of
test generation is lifted from the user, it is much eas-
ier to explore multiple variations on themes, which
are sometimes required to find bugs. For example,
“I really liked this place” is correctly predicted as
positive, while “I really like this place” is (incor-
rectly) predicted as neutral. Similarly, “I will not
be coming back” is correctly predicted as nega-
tive, while “I will not be coming back, I am sure
I can find a better place” is predicted as positive.
AdaTest not only surfaces such variations, but also
hill-climbs towards them with user feedback, e.g.
a user iteratively added the following progression
of suggested tests, with model confidence for “pos-
itive” in parentheses: “This is not good (0)”,
“I didn’t think the pizza was any good (0.28)”,
“I didn’t think the Thai escargot was good (0.6)”,
“I didn’t think the eggs were very good (0.94)”.

Non-expert testing In order to evaluate if AdaT-
est helps non-experts find bugs, and how users’
backgrounds impact the process, we recruited 24
participants equally divided between those who
self-identify as progressive or conservative. These
were all in the U.S., with a diverse range of ages
and occupations, and no background in data sci-
ence, programming, or ML. We asked users to test
the Perspectives API toxicity model for content
moderation, as an example of an application that
can impact the general public in group-specific
ways. Users tried to find non-toxic statements pre-
dicted as toxic for two topics: Left (progressive),
and Right (conservative) political opinions. We fur-
ther instructed them to only write statements they

3257

would personally feel appropriate posting online,
such that any model failures discovered are failures
that would impact them directly. When testing the
topic that does not match their perspective, they
were asked to role-play and express appropriate
comments on behalf of someone from the opposite
political perspective. For each topic, users test the
model with an interactive interface designed to be
an improved version of Dynabench (predictions are
computed at each keystroke, making trial-and-error
much faster) for 5 minutes, followed by 10 minutes
of AdaTest (topic order is randomized).

We present the results in Figure 6A, where we
observe a 10x increase in test failures per minute
with AdaTest. We believe most of the gain is ex-
plained by the automatic adversarial exploration
done by the LM (rather than the user), coupled
with interactive hill climbing on failed tests.4 We
recruited six additional participants to verify if
the model failures for their political perspective
are things they could see themselves appropriately
posting online, and report the validation rate in
Figure 6B. Participants had their tests validated by
additional raters twice as often when they were
writing tests reflecting their own political perspec-
tive (in-group vs out-group).

These results indicate that non-experts with
AdaTest are much more effective testers, even with
minimal instruction and experience. The fact that
users writing tests for another group resulted in a
much poorer representation of that group indicates
it might be important to find testers from different
groups that could be impacted by a model. Since
it is often not practical to find experts from every
impacted group, empowering non-experts with a
tool like AdaTest can be very valuable.

3.2 Debugging Loop

We evaluate the scenario where a user has found
a bug (or set of bugs) and wants to fix it. As base
models, we finetune RoBERTa-Large for duplicate
question detection on the QQP dataset (Wang et al.,
2019), and for 3-way sentiment analysis on the SST
dataset (Socher et al., 2013). We rely on CheckList
suites made available by Ribeiro et al. (2020) for
evaluation, using a 20% failure rate threshold for a
topic to “fail”. The base model fails 22 out of 53
QQP topics and 11 out of 39 Sentiment topics.

4Part of the gain may be from users learning about the
model in the Dynabench condition, but a loose upper bound
on this effect is only 2.5x, estimated by the improvement in
the Dynabench condition between the first and second topics.

(A)

(B)

Figure 6: (A) Non-experts found 10x more model fail-
ures with AdaTest assistance. (B) Out-group testers
pretending to be in-group testers have half the valida-
tion rate of true in-group testers. Error bars show the
10th and 90th percentiles of bootstrap re-samples.

We create data in order to “fix” a topic by either
taking n = 50 examples from the topic’s data in the
CheckList condition,5 or starting from a seed of 5
examples and running the Debugging Loop with
AdaTest until finding failures becomes qualitatively
difficult (on average 2.83 rounds for QQP and 3.83
rounds for Sentiment), yielding an average of 41.6
tests for QQP and 55.8 tests for Sentiment. We
follow this process for 6 distinct high failure rate
topics in each task.

Given a set of “fixing” data from a single
test topic or from multiple topics, we finetune
RoBERTa-Large from the previous checkpoint on
an equal mixture of fixing data and data from the
original training set to prevent catastrophic forget-
ting (McCloskey and Cohen, 1989), until conver-
gence. Ideally, we want to fix the original topic
(and perhaps a few more which are also impacted
by similar bugs) without adding new bugs, and thus
we evaluate the “fixed” models by measuring how
many topics in the original CheckList suite they
“fix” or “break”, i.e. move from error rate from
greater than 20% to lower than 20%6 or vice versa.
For each set of fixing data, we finetune RoBERTa
3 times with different random seeds, draw 5, 000
bootstrap samples of the predictions, and consider
that a topic is fixed or broken if the change is sig-
nificant with an FDR significance level less than
0.05 (Benjamini and Hochberg, 1995).

We present the results in Figure 7, where we
vary the number of topics used for training in the
x axis (for each tick, we sample 3 random topic

5Similar results were observed with different n, up to 500.
6Other thresholds (e.g. 10%) don’t impact relative results.

3258

Fixed Broken Net gain

AdaTest CheckList

Q
Q

P
Se

nt
im

en
t

E�ect on test topics:

to
pi

cs
 a

�e
ct

ed

to
pi

cs
 a

�e
ct

ed

topics trained on # topics trained on

Figure 7: In contrast to data augmentation with Check-
List templates, the AdaTest Debugging Loop (Figure 3)
fixes test topics without breaking other topics.

Base CheckList AdaTest

Q
Q

P Validation 91.9 91.0∗∗ 91.1∗∗
PAWS 44.4 32.9∗∗ 53.8∗∗

Se
nt

. Validation 76.8 76.3 75.8
DynaSent R1 62.0 63.0∗ 67.0∗∗

Table 1: Accuracy on validation and out of domain
datasets, training on 6 topics. ∗ and ∗∗: significant
against baseline at p = 0.05 and 0.01 over 5000 boot-
strap re-samples for 5 training seeds.

subsets of size x and average the results). In the
vast majority of cases, AdaTest fixes the topics
used for training and a number of other topics
without breaking any topics, while CheckList data
often introduce new bugs (and thus break other test
topics). Part of this may be due to higher diversity
in terms of sentence structure and length in the
AdaTest generated data, as compared to a fixed
CheckList template. However, models finetuned
only on data from the first round of the Testing
Loop (roughly equivalent to CheckList, but with
more diversity) also tend to break other topics,
which supports the importance of an iterative
debugging loop. Qualitatively, we repeatedly
observed the phenomenon illustrated in Figure 3,
where the model initially uses oversimplified
shortcuts to fix a set of tests, i.e. data from a
single round often introduces non-obvious bugs
that only get discovered and fixed in following
rounds. For example, one of the topics for QQP is
f(“more X, less antonym(X)”) = dupl.,
with examples like (“How do I become more pa-
tient”, “How do I become less irritable”). Ribeiro
et al. (2020) anticipated a potential ordering

shortcut, since the topic also contains examples of
“(less X, more antonym(X))”. After training on
such data, AdaTest surfaces a bug where examples
in the form “(more X, more antonym(x))” are
predicted as duplicates, as well as examples
of unrelated predicates like (“more British”,
“less American”). None of the topics in the
suite capture these exact behaviors, but similar
shortcuts break topics that are present such as
f(“more X, less X”) , dupl.. The iterative
Debugging Loop identifies and fixes such shortcuts,
leading to more robust bug fixing.

We evaluate accuracy on the validation dataset
and on challenging out of domain datasets (Zhang
et al., 2019; Potts et al., 2021) after training on all
6 topics (Table 1). In both tasks, AdaTest augmen-
tation has a negligible or non-significant impact
on in-domain accuracy, and improves performance
on out of domain data. While AdaTest may have
introduced new bugs not caught by the CheckList
test suite or these additional test sets, the improved
performance on all of these indicate that the De-
bugging Loop is not fixing bugs at the expense of
significantly degrading performance elsewhere. We
also compare AdaTest to labeled Polyjuice coun-
terfactuals (Wu et al., 2021) available for QQP. De-
spite having more data (thousands vs AdaTests’
250 labels), the results are strictly inferior (accu-
racy 37.8 on PAWS, fixed 2 topics and broke 1,
while Adatest fixes 11 and breaks none).

3.3 Case Studies

Non-expert testing of non-classification models
In order to evaluate if AdaTest would help non-
experts test models for more complex tasks, we
recruited a bilingual speaker with no technical back-
ground, and asked them to test a translation system
and an NER system commercialized by a large
software company (and thus subject to extensive
prior testing and validation). Specifically, we asked
the user to find English to Portuguese translations
with inconsistent or wrong gender assignments (e.g.
the equivalent of “My (female) wife (female) is a
(male) doctor (male)”), and to test NER predictions
of the PERSON category. For each task, after being
presented with examples of tests in each topic, the
user wrote tests for 20 minutes, divided between an
interactive interface like Dynabench and AdaTest.

Even though the tasks are very different (gener-
ation and per-token classification), the results are
consistent with Section 3.1, with the user finding

3259

many more bugs with AdaTest (32 vs 4 on transla-
tion, 16 vs 0 on NER). Qualitatively, adaptive test
suggestions helped the user find bugs covering a
much wider range of phenomena than all of the
attempts without assistance. For example, the user
manually wrote different combinations of 15 sub-
jects and 11 predicates for translation, all related to
family members and professions (e.g. “My mom
is a doctor”). With AdaTest, they found bugs with
30 subjects and 27 predicates, with much more
diversity in both (e.g. “The woman with the red
dress is my best friend”). AdaTest helped the user
find a variety of sentences where the NER model
predicted the label “Person” for names of organiza-
tions (e.g. “What I do for Black Booty is provide
financial advice”), products (e.g. “I think Alikat
is a good form of cash money”), and animals (e.g.
“Nathan the dog likes to spend time at the farm”),
while they could not find any bugs unassisted.

Text to video matching To gauge the useful-
ness of AdaTest for established model develop-
ment and maintenance pipelines, we shared AdaT-
est with a ML development team in charge of a
multi-modal classifier that matches textual inputs
with a database of videos. While their produc-
tion model had gone through several external red-
teaming reviews, a single short (unaided) AdaTest
session revealed novel gender bias and related is-
sues that were then fed back into their custom miti-
gation pipeline. The team reported that being able
to quickly generate diverse model-targeted tests,
while at the same time creating a suite of tests for
future model versions was extremely valuable, and
they have since sought to develop adaptive test trees
for their whole suite of production models.

Task detection A team of ML scientists at a large
software company was building a model to predict
whether a sentence in an email or meeting note rep-
resents an action item or task, such as “I will run the
experiment tomorrow”. Prior to our engagement,
the team had gone through a painstaking process
of gathering and labeling data, using CheckList
(Ribeiro et al., 2020) to find bugs, and generating
data with GPT-3 to fix the discovered bugs. The
team was thus well versed in testing, and had been
trying to accomplish the same goals that AdaTest
is built for, using the same exact LM.

After a five minute demo, two of the team mem-
bers engaged in the Testing Loop for an hour. In
this short session, they found many previously

Random Baseline GPT-3 aug AdaTest

Task dataset 1 10.0∗∗ 51.4 65.6∗∗ 77.3∗∗
Task dataset 2 18.1∗∗ 54.4 66.0∗∗ 76.5∗∗

Table 2: F1 score on two hidden task datasets. Low
random performance is due to class imbalance. ∗ and ∗∗

represent significance at p = 0.05 and 0.01 over 5000
bootstrap re-samples for 5 training seeds.

unknown bugs, with various topics they hadn’t
thought about testing (e.g. “While X, task”, as
in “While we wait for the manufacturer, let’s build
a slide deck”), and some they had tested and (incor-
rectly) thought they had fixed (e.g. false positives
related to waiting, such as “John will wait for the
decision” or “Let’s put a pin on it”). When testing
name invariances with CheckList they hadn’t in-
cluded personal pronouns (e.g. “Karen will imple-
ment the feature” = “I will implement the feature”),
which AdaTest revealed the model fails on.

One team member ran the Debugging Loop for
approximately 3 hours, fixing bugs with the same
procedure as in Section 3.2. Consistent with the
previous results, they found that fixing bugs ini-
tially led to new bugs being introduced, e.g. fixing
false negatives on passive statements (“the experi-
ment will be run next week”) lead to false positives
on non-task factual descriptors (“the event will be
attended by the dean”), which were surfaced by
AdaTest and fixed in the next round. In order to
compare the results of using AdaTest to their pre-
vious efforts, we collected and labeled two new
datasets from sources they hadn’t used as training
data. We present the F1 scores of models aug-
mented either with their GPT-3 generated data or
on AdaTest data in Table 2, where AdaTest shows
significant improvement despite involving much
less effort. Qualitatively, the team noted that find-
ing bugs with AdaTest was much easier than with
CheckList, by virtue of the extensive suggestions
made by the LM. Similarly, after noticing (and fix-
ing) potential shortcuts in multiple rounds of the
Debugging Loop, the team realized that their prior
GPT-3 augmentation was almost certainly liable to
such shortcuts, and thus less effective.

3.4 Discussion
We evaluated AdaTest on 8 different tasks spanning
text classification, generation, and per-token predic-
tion. In terms of finding bugs, we compare AdaTest
to experts using CheckList and non-experts using
a more responsive version of Dynabench. Users

3260

consistently found many more bugs per minute
with AdaTest on research models and commercial
models at different development stages (early ver-
sion, pre-release, and mature models in production).
The fact that AdaTest requires minimal training
and is easy enough to be used by users without
any technical background is an asset, especially
when it is important to have testers that represent
diverse groups that may be negatively impacted by
bugs. In terms of fixing bugs, we compared the
Debugging Loop to naively augmenting data with
CheckList templates, using Polyjuice counterfac-
tuals, and having an expert use GPT-3 to create
additional data. In every case, AdaTest improved
performance more than alternatives, and crucially
did not add new bugs that degrade performance on
available measurements, due to the iterative nature
of the Debugging Loop. In contrast to alternatives,
further testing with AdaTest is low-cost, and thus
this augmentation does not have the effect of in-
validating costly evaluation data (e.g. invalidating
CheckList tests that are laborious to create). In fact,
test trees from previous sessions can be used to test
new models, or to bootstrap a new AdaTest session.

4 Related Work

Even though we used CheckList and Dynabench as
baselines in the previous section, our results indi-
cate that these and other approaches (Gardner et al.,
2020; Kaushik et al., 2019) where human creativ-
ity and effort are bottlenecks (Bhatt et al., 2021)
would benefit from the greatly enhanced bug dis-
covery productivity made possible by AdaTest. On
the other hand, CheckList as a framework provides
great guidance in organizing the test tree, enumer-
ating important capabilities and perturbations to be
tested, as well as a tool for systematically apply-
ing the test tree to future models. Similarly, Dyn-
abench provides model serving capabilities and
a crowdsourcing platform that would greatly en-
hance AdaTest, especially as users share test trees
and adapt them to new models.

In terms of fixing bugs, fully automatic data aug-
mentation with LMs (Yoo et al., 2021; Wang et al.,
2021) cannot incorporate human “specification” be-
yond already existing data, nor debug phenomena
that is very far from the existing data. On the other
hand, general purpose or contrastive counterfactu-
als have shown mixed or marginally positive re-
sults (Huang et al., 2020; Wu et al., 2021) similar
to what we observed in Section 3.2, except when

large quantities of data are gathered (Nie et al.,
2020). Our hypothesis is that underspecification
(D’Amour et al., 2020) is a major factor limiting
the benefit of many counterfactual augmentation
techniques. We observed that the first rounds of
the Debugging Loop often decrease or maintain
overall performance until additional data from later
rounds specifies the correct behavior more thor-
oughly, which indicates that counterfactual data
targeted precisely where the model is underspeci-
fied is often more effective than non-targeted data.
If true, this hypothesis argues for AdaTest’s fast
iteration in the Debugging Loop, rather than longer
cycles (e.g. Dynabench rounds can take months).

5 Conclusion

AdaTest encourages a close collaboration between
a human and a language model, yielding the ben-
efits of both. The user provides specification that
the LM lacks, while the LM provides creativity
at a scale that is infeasible for the user. AdaT-
est offers significant productivity gains for expert
users, while also remaining simple enough to em-
power diverse groups of non-experts. The Debug-
ging Loop connects model testing and debugging
to effectively fix bugs, taking model development
a step closer towards the iterative nature of tra-
ditional software development. We have demon-
strated AdaTest’s effectiveness on classification
models (sentiment analysis, QQP, toxicity, media
selection, task detection), generation models (GPT-
2, translation), and per-token models (NER), with
models ranging from well-tested production sys-
tems to brand new applications. Our results indi-
cate that adaptive testing and debugging can serve
as an effective NLP development paradigm for a
broad range of applications. To help support this,
AdaTest (with various test trees) is open sourced at
https://github.com/microsoft/adatest.

Acknowledgements

We thank Adarsh Jeewajee, Carlos Guestrin, Ece
Kamar, Fereshte Khani, Gregory Plumb, Gabriel
Ilharco, Harsha Nori, Sameer Singh, and Shikhar
Murty for helpful discussions and feedback. We
also thank Bruno Melo, Hamid Palangi, Ji Li, and
Remmelt Ammerlaan for pilot testing/case studies.
Finally, we thank Tongshuang Wu for all of the
above and helping us think about figures, check-
ing translations, offering LATEX advice, and other
miscellaneous help.

3261

https://github.com/microsoft/adatest

References
Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic

and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Yoav Benjamini and Yosef Hochberg. 1995. Control-
ling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the
Royal statistical society: series B (Methodological),
57(1):289–300.

Shaily Bhatt, Rahul Jain, Sandipan Dandapat, and
Sunayana Sitaram. 2021. A case study of efficacy
and challenges in practical human-in-loop evalua-
tion of NLP systems using checklist. In Proceed-
ings of the Workshop on Human Evaluation of NLP
Systems (HumEval), pages 120–130, Online. Associ-
ation for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Alexander D’Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen, Jonathan Deaton, Jacob Eisen-
stein, Matthew D Hoffman, et al. 2020. Un-
derspecification presents challenges for credibil-
ity in modern machine learning. arXiv preprint
arXiv:2011.03395.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating models’ local decision boundaries
via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307–1323, Online. Association for Computational
Linguistics.

W Keith Hastings. 1970. Monte carlo sampling meth-
ods using markov chains and their applications.

William Huang, Haokun Liu, and Samuel R. Bowman.
2020. Counterfactually-augmented SNLI training
data does not yield better generalization than unaug-
mented data. In Proceedings of the First Workshop

on Insights from Negative Results in NLP, pages 82–
87, Online. Association for Computational Linguis-
tics.

Daniel Kahneman. 2011. Thinking, fast and slow.
Macmillan.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2019. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mo-
hit Bansal, Christopher Potts, and Adina Williams.
2021. Dynabench: Rethinking benchmarking in
NLP. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4110–4124, Online. Association for
Computational Linguistics.

Todd Kulesza, Saleema Amershi, Rich Caruana,
Danyel Fisher, and Denis Charles. 2014. Struc-
tured labeling for facilitating concept evolution in
machine learning. In Proceedings of the Confer-
ence on Human Factors in Computing Systems (CHI
2014). ACM.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. El-
sevier.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial nli: A new benchmark for natural language
understanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4885–4901.

Christopher Potts, Zhengxuan Wu, Atticus Geiger, and
Douwe Kiela. 2021. DynaSent: A dynamic bench-
mark for sentiment analysis. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2388–2404, Online. As-
sociation for Computational Linguistics.

Vinodkumar Prabhakaran, Ben Hutchinson, and Mar-
garet Mitchell. 2019. Perturbation sensitivity analy-
sis to detect unintended model biases. In Proceed-
ings of the 2019 Conference on Empirical Methods

3262

https://aclanthology.org/2021.humeval-1.14
https://aclanthology.org/2021.humeval-1.14
https://aclanthology.org/2021.humeval-1.14
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
https://www.microsoft.com/en-us/research/publication/structured-labeling-for-facilitating-concept-evolution-in-machine-learning/
https://www.microsoft.com/en-us/research/publication/structured-labeling-for-facilitating-concept-evolution-in-machine-learning/
https://www.microsoft.com/en-us/research/publication/structured-labeling-for-facilitating-concept-evolution-in-machine-learning/
https://doi.org/10.18653/v1/2021.acl-long.186
https://doi.org/10.18653/v1/2021.acl-long.186
https://doi.org/10.18653/v1/D19-1578
https://doi.org/10.18653/v1/D19-1578

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5740–5745, Hong
Kong, China. Association for Computational Lin-
guistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversarial
rules for debugging nlp models. In Association for
Computational Linguistics (ACL).

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond Accuracy: Behav-
ioral Testing of NLP models with CheckList. In As-
sociation for Computational Linguistics (ACL).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021. Want to reduce label-
ing cost? GPT-3 can help. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 4195–4205, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Association
for Computational Linguistics (ACL).

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S. Weld. 2021. Polyjuice: Generating
counterfactuals for explaining, evaluating, and im-
proving models. In Proceedings of the 59th Annual

Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-
Woo Lee, and Woomyoung Park. 2021. GPT3Mix:
Leveraging large-scale language models for text aug-
mentation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2225–
2239, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scram-
bling. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1298–1308, Minneapolis, Minnesota. Association
for Computational Linguistics.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
International Conference on Machine Learning.

A Language model prompt design

The test suggestion function inside the AdaTest
Testing Loop (main text Figure 1) is implemented
using a large-scale generative LM. We used GPT-3
(Brown et al., 2020) in our experiments, but we also
support open source HuggingFace models (Wolf
et al., 2020). When provided with a prompt in the
form of a list of items, these large LMs can gener-
ate new items that continue the list, and come from
the same distribution of items as the original list.
By carefully controlling the structure and content
of this list, we can steer large LMs to generate new
content on nearly any topic in nearly any form (ex-
ceptions being very long-form text, and languages
unseen by the LM during training).

There is always a current focus topic active dur-
ing the Testing Loop, and it is the goal of the LM
test suggestion process to generate new tests that
will be categorized by the user as direct children of
the focus topic. This means we are not interested
in tests outside the focus topic or inside already-
defined subtopics of the focus topic. We avoid
tests outside the topic in order to maintain a “focus”
on the current topic the user has selected, and we
avoid tests inside subtopics because these represent
portions of the current topic that have already been
well explored, and so should be prevented from
dominating the test suggestions. If the user is inter-
ested in a particular subtopic, they simply open it
and generate suggestions specific to that topic. In
addition to allowing users to guide the LM, focus

3263

https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2021.findings-emnlp.192
https://aclanthology.org/2021.findings-emnlp.192
https://aclanthology.org/2021.findings-emnlp.192
https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.18653/v1/N19-1131

topics also improve the quality of the LM’s sug-
gestions, since LMs tend to generate higher quality
tests when restricted to a narrower scope. Topics
also enable zero-shot LM test generation for empty
topics, since we can condition on the topic when
generating a test and so use examples from related
topics as demonstrations for the current topic.

The LM prompt itself consists of several tests (7
by default) selected from the current focus topic (or
from nearby topics if the current topic is empty). A
test is written into the prompt as a topic, followed
by a space-separated list of values on the next line
(see Figure 8). Prompt parameters are configurable,
but we found that 7 examples gave an appropriate
amount of steering information to GPT-3 (for both
the Davinci and Curie models) without giving so
many examples that strong patterns would harm the
diversity of the generated tests. We experimented
with a variety of prompt formats, including priming
with “instruction” sentences, and found that the
more minimal the notation the better, so as to bias
the generation process as little as possible. We
also remove as much information from the prompt
as possible to further focus and de-bias the LM.
For example, we do not include expected outputs if
they are the same for all the tests in the prompt, and
similarly we only include topic information when
using tests from outside the current focus topic.
We also repeatedly generate a single next list item,
rather than generating several items in a list. This
is because generating a long list usually reduces
diversity, as generated items tend to converge to a
single topic.

Given a prompt structure and a set of tests in the
current topic, steering the test suggestion genera-
tion comes down to choosing a set tests to include
in the LM prompt. We do this by scoring all tests
as the product of several factors, then selecting the
highest scoring test and adding it to the prompt list.
This process is iterated unless a sufficient number
of tests have been selected to be included in the
prompt. This list is then reversed prior to sampling
from the LM, because the LM weights samples
close to the end of the prompt more strongly (Zhao
et al., 2021). The factors we use for test selection
are:

• Test failure score - Tests with higher scores are
tests that the model fails or is closer to failing
than tests with lower scores. So the strongest
ranking factor we use (other than topic mem-
bership) is high test failure score, since this

/Tests/Negation/Negated positive
“I really wanted to like this, but I did not.” “positive”

/Tests/Negation/Negated positive
“What seemed good was not good in reality.” “positive”

/Tests/Negation/Negated positive
“I thought this was great, but it was not” “positive”

/Tests/Negation/Negated positive
“We were hopeful, but disappointed.” “positive”

/Tests/Negation/Negated positive
“I expected so much, but got nothing good.” “positive”

/Tests/Negation/Negated positive
“I expected to love this, but I did not.” “positive”

/Tests/Negation/Negated positive
“I wanted to love this, but I didn’t” “positive”

/Tests/Negation/Negated positive
“This movie was not as good as I expected.” “positive”

Figure 8: A sample prompt and LM completion for the
/Negation/Negated positive topic from Figure 9. The
red text is written by the LM, while the black text is
given as the prompt. Note that all these tests are of the
type {} should not output {}. For this topic the
output and the topic are the same for all the examples in
the prompt, so in AdaTest they would be removed (all
the grayed out text), leaving just a list of quoted strings.

facilitates hill climbing towards model fail-
ures.

• Topic membership - Tests outside the current
topic are very strongly penalized and are only
used if the current topic is empty or nearly
empty. Tests inside subtopics of the current
topic are also strongly penalized for the rea-
sons mentioned above (that these represent
already explored regions of the topic).

• Score randomization - Test failure scores can
be computed in many different ways, but they
are often continuous values that represent how
close a model’s prediction is to failing a test
(or how far it is past the failure threshold).
Tests with very similar scores have an equally
likely chance of being good for prompt inclu-
sion (since they each can lead the LM towards
high-scoring on-topic tests). To encourage di-
verse choices among similar scoring tests we
add one standard deviation of random Gaus-
sian noise to the test scores.

• Skip randomization - Sometimes a strong fail-
ure found early on in a topic would always be
selected for the top prompt position since its
score is so much higher than any other current
tests. However this can harm diversity so we

3264

Figure 9: A screenshot of the AdaTest interface at the root of a sentiment analysis test tree based on CheckList
capabilities. The test failure scores for all tests in a topic are shown as vertical lines to the right of the topic (colored
red if the test is failing), and the average score of the tests in a topic is shown as a gray bar. In this session we are
scoring against two models simultaneously, though we are only adapting to the Azure model and so any Google
failures are direct transfers.

also introduce skip randomization where we
randomly skip over tests (by penalizing their
score) with 25% probability.

• Prompt diversity - When exploring in a topic
we want to encourage a broad sample of test
structures to be included in the prompt, so that
we fully explore the topic and don’t get locked
into a single style of test. To promote this, we
penalize each test score by the cosine simi-
larity of that test’s embedding to the closest
embedding of a test that has already be se-
lected for inclusion in the prompt. By default
we use RoBERTa-base (Liu et al., 2019) for
this, though any similarity embedding would
work.

We repeat the test selection process r times to
create r different prompts (where we maximize r
subject to not causing more than a 50% increase in
computational overhead due to lost prompt reuse
during completions). If the user has requested K
suggestions for a round, then for each prompt we
ask the LM to generate bK/rc completions that are
parsed to produce at most that many tests (at most,

since some completions may produce invalid or
duplicate tests). These tests are then applied to
the target model (or several models, since we can
explore multiple models in parallel), sorted by test
failure score, and returned to the user for filtering
and organization.

B User interface

The entire Testing Loop process occurs through
AdaTest’s interactive web interface, which works
both as a standalone server or inside a Jupyter note-
book. Figure 9 shows a screenshot of this interface,
browsing the top node of a test tree targeting the
Azure sentiment analysis model (Google’s model
is also being scored, but is not adaptively targeted).
While we experimented with interfaces that present
the entire test tree to the user at once, these became
intractable for larger test trees. Thus, we follow
traditional file system browsers, which scale well
to very large and deep trees.

On the left side of Figure 9 is a list of topics
based on CheckList capabilities (Ribeiro et al.,
2020). These are top-level topics, some of
which are well explored with many subtopics (e.g.

3265

Figure 10: A screenshot of the AdaTest interface inside the /Negation/Negated positive topic after LM suggestions
have been requested. Note that AdaTest is adversarially targeting failures in the Azure model, so the suggestions
tend to find more Azure failures than Google failures.

/Fairness), while others have yet to be explored by
the user (such as /Logic). To enable users to or-
ganize the test tree, topics can be edited, opened,
and dragged and dropped just like in a standard file
viewer.

On the right side of Figure 9 there are two
columns representing the test failure scores for two
target models, Azure and Google sentiment anal-
ysis. The horizontal position of the colored bars
represents the value of a single test’s score and the
color denotes passing or failing. Since each bar
represents a single test inside a topic, hovering the
mouse over the bar will show the associated test.
Hovering anywhere over a row also shows the num-
ber of failing and passing tests for the topic (the
total counts for the current topic are shown at the
bottom). Note that topics are sorted by the largest
test fail score they contain. The grey box above
the test topics is where LM test suggestions are
shown. If the user clicked the suggestions button
in Figure 9, they would get a list of suggested tests
designed to not fall into any of the current topics.
This is very challenging at such a high level of
abstraction, so the precision of these suggestions
might be low, but finding such tests is often still
possible given enough iteration. Once a few such
tests are found, a new top level topic can be formed

and explored. An alternative to this process (which
tends to work better for high level concepts) is to
ask AdaTest to suggest new topic names (done the
same way we suggest new tests). Given a starting
test tree, users can potentially fill out whole new
sub-trees without ever writing anything manually
by alternating between topic suggestions and zero-
shot test suggestions for new topics. In general, the
precision of the test suggestion process increases as
the topics grow narrower, so expanding subtopics
topic will likely be much easier than the parent
topic. To jump start this process users can always
manually add tests or topics by clicking the respec-
tive add buttons at the top right, or by editing a
current test (scores are recomputed in real-time).

Figure 10 shows what happens after
we navigate down the topic tree into the
/Negation/Negated positive topic, and then request
LM suggestions. Current tests inside the topic are
shown at the bottom sorted by their test failure
score for the Azure model (and continue on
past the screen capture) while test suggestions
are shown in the gray box at the top. The test
suggestions box is scrollable and contains ~100
suggested tests (also sorted by their test failure
score for the Azure model).

3266

The selected test suggestion in Figure 10
is highlighted and the test failure scores are
shown for both models. The highlighted test
is a valid high scoring test that falls within the
/Negation/Negated positive topic, so the user can
add it to the current topic in one of several ways:
dragging it down to the list of in-topic tests, click-
ing the "plus" button on the left of the test row,
hitting Enter, etc. Note that the test directly below
the selected test is also high scoring on the Azure
model, but the test is invalid since the input text
actually does express a positive sentiment, so the
expectation of the test is incorrect.

3267

