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Abstract

A dialogue response is malevolent if it is
grounded in negative emotions, inappropriate
behavior, or an unethical value basis in terms
of content and dialogue acts. The detection
of malevolent dialogue responses is attracting
growing interest. Current research on detect-
ing dialogue malevolence has limitations in
terms of datasets and methods. First, available
dialogue datasets related to malevolence are la-
beled with a single category, but in practice
assigning a single category to each utterance
may not be appropriate as some malevolent
utterances belong to multiple labels. Second,
current methods for detecting dialogue malev-
olence neglect label correlation. Therefore, we
propose the task of multi-label dialogue malev-
olence detection and crowdsource a multi-
label dataset, multi-label dialogue malevo-
lence detection (MDMD) for evaluation. We
also propose a multi-label malevolence detec-
tion model, multi-faceted label correlation en-
hanced CRF (MCRF), with two label correla-
tion mechanisms, label correlation in taxon-
omy (LCT) and label correlation in context
(LCC). Experiments on MDMD show that
our method outperforms the best performing
baseline by a large margin, i.e., 16.1%, 11.9%,
12.0% and 6.1% on precision, recall, F1, and
Jaccard score, respectively.

1 Introduction

Safety is an increasingly important aspect of artifi-
cial intelligence development (Amodei et al., 2016;
Roegiest et al., 2019; Sun et al., 2021). When
it comes to dialogue agents, taking measures to
avoid risks of generating undesirable and harmful
responses may have a profound positive impact
on the adoption of conversational technology (Xu
et al., 2020). Research on safe dialogue agents in-
volves aspects such as inaccurate information (Gun-
son et al., 2021), fairness (Liu et al., 2020), and
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unauthorized expertise (Sun et al., 2021). Malevo-
lence is another key aspect (Zhang et al., 2021b,a),
e.g., whether the dialogue utterance contains malev-
olent content that is related to offensiveness (Dinan
et al., 2019), toxicity (Gehman et al., 2020), ad
hominem (Sheng et al., 2021), and toxicity agree-
ment (Baheti et al., 2021), etc.

There have been several studies targeting malev-
olence detection (Roussinov and Robles-Flores,
2007; Saral et al., 2018; Zhang et al., 2021a,b).
We build on the work of Zhang et al. (2021b) who
introduce the malevolent dialogue response detec-
tion and classification task, present a hierarchical
malevolent dialogue taxonomy, create a labeled
multi-turn dialogue data set, and apply state-of-
the-art text classification methods to the task. One
important limitation of their work is that they only
explore single-label dialogue malevolence detec-
tion (SDMD), i.e., they assume that each dialogue
utterance corresponds to a single malevolence or
non-malevolence label. However, some utterances
have more than one label, e.g., in Figure 1, the
utterance “f** people are disgusting”1 belongs to
both “disgust” and “negative intergroup attitude
(NIA).” This is because malevolence labels are cor-
related with one another, which we refer to as label
correlation in taxonomy (LCT).

Zhang et al. (2021b) propose a hierarchical
malevolent dialogue taxonomy that classifies cor-
related malevolence labels into the same group by
investigating three dimensions – negative emotions,
negative psychological behavior, and unethical is-
sues. However, the correlation of malevolence la-
bels in different groups is not well captured. An-
other limitation is that the above studies neglect the
impact of malevolence in dialogue contexts (i.e.,
previous turns) on the current utterance. Previous
work concatenates the dialogue context as model
input without explicitly modeling the malevolence

1Words that turn a statement into a statement that may
cause harm are masked in this work.
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Figure 1: Label correlation in taxonomy (LCT) and
label correlation in context (LCC). In terms of LCT,
“negative intergroup attitude (NIA)” is correlated with
“disgust”, which can be reflected by the utterance in
blue (LCT). In different turns, “blame” is likely to co-
occur with “anger” and “blame”, which can be reflected
by the utterances in green (LCC).

transition. For example, in Figure 1, “blame” is
likely to cause “blame” for the same person, while
for different persons, “blame” is likely to cause
“anger”. This is due to label correlation in con-
text (LCC). Zhang et al. (2021b) do not take corre-
lation of malevolence labels in different dialogue
turns into account and our label-correlation mecha-
nisms are different from previous methods which
require multi-label training sets (Kurata et al., 2016;
Tsai et al., 2021).

We address the two limitations listed above. Our
goal is to boost multi-label dialogue malevolence
detection (MDMD) by incorporating label corre-
lation in taxonomy and context based on a single-
label dataset with re-annotated multi-label evalu-
ation data. This goal comes with two main chal-
lenges: (1) A dataset challenge, as we only have
one label per utterance in the training data, which
increases the negative effect of unobserved labels
during training: how to improve the single gold la-
bels via LCT and decrease the probability of over–
fitting; (2) A classification method challenge: how
to capture LCC to help improve the classification.

Based on Conditional Random Field (CRF), we
propose a multi-faceted label correlation enhanced
CRF (MCRF) framework to improve MDMD from
single-label training data. The approach contains
a position-based label correlation in taxonomy
(PLCT)-based encoder and a multi-faceted CRF
layer, which includes a LCC-based feature func-
tion and LCT-based label distribution learning. For
the dataset challenge, we build a LCT-based label
distribution learning module to exploit the label
correlation in hierarchical taxonomy, which can

alleviate the unobserved label problem. For the
classification method challenge, we build an LCC-
based transition function to exploit the label corre-
lation in context.

We crowdsource a new dataset based on the pre-
viously released malevolent dialogue response de-
tection and classifying (MDRDC) dataset, conduct
experiments on this dataset, and show that MCRF
with a pretrained model, i.e., BERT-MCRF, out-
performs competitive baselines by a large margin.
We also conduct further analyses of the LCT and
LCC modules, which reveal that multi-faceted la-
bel correlation does enhance multi-label dialogue
malevolence detection.

We summarize our contributions as follows:
(1) We crowdsource a new dataset, i.e., MDMD,
for the task of multi-label dialogue malevolence
detection from single-label training data. (2) We
propose multi-faceted label correlation, including
LCC and LCT, which is shown to be beneficial for
dialogue malevolence detection. (3) We introduce a
new framework, MCRF, and compare it with com-
petitive baseline models on the MDMD dataset and
demonstrate its effectiveness.

2 Related Work

2.1 Malevolence detection taxonomies

The taxonomies for hate speech, aggressiveness,
offensiveness, and condescending only contain a
few categories (Waseem and Hovy, 2016; Kumar
et al., 2018; Zampieri et al., 2019; Wang and Potts,
2019), which are lack of unified understanding
of what constitutes malevolence. To address this
gap, Sheng et al. (2021) introduce a two-level ad
hominem taxonomy and Sun et al. (2021) intro-
duce a safety taxonomy, both of which contain
seven different aspects. Furthermore, Zhang et al.
(2021b) define a three-level malevolence taxonomy
that contains eighteen categories in total. In this
work, we follow the taxonomy proposed by Zhang
et al. (2021b).

2.2 Malevolence detection datasets

There are several datasets to support malevo-
lence classification or detection research. Many
of them investigate hate speech detection, e.g.,
Predictive Features for Hate Speech Detection
(PFHSD) (Waseem and Hovy, 2016), Hate Speech
Detection Dataset (HSDD) (Davidson et al.,
2017), and Multilingual Detection of Hate Speech
(MDHS) (Basile et al., 2019), which are all col-
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Figure 2: Framework of the proposed multi-faceted label correlation enhanced CRF (MCRF) model.
.

lected from Twitter. These datasets lack diver-
sity, have a small data size, low inter-annotator
agreement, and small lexicon size. The others
are on aggressiveness, offensiveness, and conde-
scending, e.g., Trolling, Aggression and Cyber-
bullying (TRAC) (Kumar et al., 2018), Offensive
Language Identification Dataset (OLID) (Zampieri
et al., 2019), and TALKDOWN (Wang and Potts,
2019), which have been collected from Facebook,
Reddit, and Twitter, respectively. These datasets
have a larger size than those mentioned before,
but problems such as low diversity and limited
lexicon size affect them too. To sum up, none
of these datasets is in the form of multi-turn dia-
logues. To address this, recent studies have released
the TOXICHAT (Baheti et al., 2021), ADHOM-
INTWEETS (Sheng et al., 2021), MDRDC (Zhang
et al., 2021b), and DIASAFETY datasets (Sun
et al., 2021), for research into offensiveness, ad
hominem, safety detection, etc. However, the
above datasets all fall into single-label dialogue
malevolence detection.

In contrast, we build a dataset for the evaluation
of multi-label malevolence detection, considering
an utterance may contain multiple labels.

2.3 Malevolence detection methods

Methods for malevolence detection include rule
based (Roussinov and Robles-Flores, 2007), tradi-
tional machine learning based (Waseem and Hovy,
2016; Davidson et al., 2017; Saral et al., 2018;
Basile et al., 2019), and deep learning based (Ku-
mar et al., 2018; Zampieri et al., 2019; Wang and
Potts, 2019; Sheng et al., 2021; Zhang et al., 2021b)
approaches. Roussinov and Robles-Flores (2007)
define malevolence by filtering the keywords. Saral

et al. (2018) survey the machine learning-based de-
tection methods, including KNN and SVM-based
methods. The performance of these methods is
not strong enough as malevolence detection re-
quires a deep understanding of semantics. Kumar
et al. (2018) apply CNNs and LSTMs for aggres-
siveness detection. Zampieri et al. (2019) apply
CNNs and Bi-LSTMs for offensiveness detection.
More recently, pretrained models, e.g., BERT and
RoBERTa, have been used for ad hominem, malev-
olence, and safety (Sheng et al., 2021; Zhang et al.,
2021b; Sun et al., 2021) , demonstrating better per-
formance than LSTM, CNN, RCNN, and GNN
based models (Zhang et al., 2021b).

Compared with previous methods, we model
malevolence detection as a multi-label dialogue
malevolence detection task instead of a single-label
dialogue malevolence detection task. Moreover,
we propose two label correlation mechanisms, i.e.,
label correlation in taxonomy (LCT) and label cor-
relation in context (LCC).

3 Method

3.1 Overall

Given a dialogue that contains m utterances, x =
[x1, x2, . . . , xi, . . . , xm] and xi is the i-th utterance
in the dialogue. y = [y1, y2, . . . , yi, . . . , ym] de-
notes the label sequence of one dialogue, where
yi ∈ {0, 1}n is the label for each utterance. l =
{l1, l2, . . . , lj , . . . , ln} denotes the label set, where
lj is the j-th label, n is the total number of label
categories. Multi-label dialogue malevolence de-
tection (MDMD) aims to assign the most reliable
labels to each xi. Since there is no large-scale
MDMD dataset, during training, we observe one
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non-malevolent label or only observe one malevo-
lent label per utterance, while the other malevolent
labels are unknown. We build a MDMD dataset for
evaluation only, the details of which can be found
in the experiments.

We propose a model, multi-faceted label corre-
lation enhanced CRF (MCRF), for MDMD. As
shown in Figure 2, MCRF consists of a PLCT-
based encoder and a multi-faceted CRF layer,
where the PLCT-based encoder is used to encode
the utterances x and labels l, and output the repre-
sentationsH andR; the representations are fed into
the multi-faceted CRF layer to predict the multi-
labels ŷ. The PLCT-based encoder is enhanced by a
taxonomy tree-based position embedding epos; the
multi-faceted CRF layer is enhanced by learning-
based label correlation in taxonomy (LLCT) (i.e.,
ỹ), LCC (i.e., T and T ′), and the representation
output of the PLCT-based encoder (i.e., H and
R). In the following subsections, we detail each
component.

3.2 Utterance and label encoder

As shown in Figure 2, the utterance and label en-
coder takes the utterances and labels as input, and
the output is the representations of utterances and
labels. Following Liu and Lapata (2019), each ut-
terance is encoded separately by inserting “[CLS]”
at the start of each utterance and “[SEP]” at the
end of each utterance. The labels are encoded by
inserting “[CLS]” between the last utterance and
labels and “[SEP]” at the end of labels. We uti-
lize three kinds of embeddings, namely token em-
beddings, segment embeddings, and position em-
beddings. Token embeddings follow the original
transformer paper (Vaswani et al., 2017). Segment
embeddings distinguish each utterance, as well as
the labels, by eA or eB , where eA and eB are odd
or even. Position embeddings for utterances cap-
ture the position of the utterances (Wang and Chen,
2020). In order to improve the representation of la-
bels, we change the position embeddings of labels
into PLCT-based position embedding (see §3.3).
We feed the three embeddings into a pretrained
model (i.e., BERT) to get the representations of
utterances and labels:

H,R = PTM([e(xi), e(lj)]),

e = etok + eseg + epos,
(1)

where PTM is the pretrained model; etok,
eseg, and epos are the token, segment and

Figure 3: Demonstration of taxonomy tree of labels.

position embeddings, respectively. H =
{h1, h2, . . . , hi, . . . , hm} denotes the repsenta-
tions of the utterances with hi (corresponding to
pooler output of “[CLS]”) representing the i-th ut-
terance xi. R = {r1, r2, . . . , rj , . . . , rn} are the
representations of the labels with rj (correspond-
ing to sequence output of labels) representing the
j-th label lj .

3.3 Multi-faceted label correlation

Multi-faceted label correlation is the main compo-
nent of MCRF, which is composed of two major
modules: LCT and LCC. The former is meant
to decrease the probability of over-fitting caused
by single-label annotated data, while the latter is
meant to leverage the influence of the previous la-
bel on the next label of the utterances from the
same user and the other user.
Label correlation in taxonomy. The LCT mod-
ule contains two parts: PLCT and LLCT. First,
the PLCT module captures label correlation in the
taxonomy tree. The input of the module is the tax-
onomy tree, the output is the label position, and the
module is used for improving the encoder. PLCT
is defined by the taxonomy tree-based position of
each label, which is formulated by its path from
the root in the taxonomy tree (Wang et al., 2021).
The taxonomy of malevolence consists of a root
and three levels of labels. We use the 1st-level, 2nd-
level, and 3rd-level of labels to get the coordinate
for the 3rd-level labels. For instance, in Figure 3,
the taxonomy tree-based positional label embed-
ding for “blame” is (1, 2, 0). We use label position
output of PLCT to improve epos in Eq. 1, and the
encoder is improved as PLCT-based encoder.

Second, the LLCT module captures label corre-
lation by learning a correlation matrix V n×n. Each
element of the matrix corresponds to the correlation
of two labels accordingly as follows:

V =
1

2
(V̂j,j′ + V ′j,j′), (2)
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where V̂ is the learned LCT correlation matrix by
representations of labels, V̂j,j′ = d(rj , rj′); V ′ is
the fixed LCT correlation matrix, V ′j,j′ = d(cj , cj′);
d is the correlation function and we use the Cosine
similarity; rj and r′j are the representations of the
j-th and j′-th label by PLCT-based encoder with
taxonomy tree position, i.e., R from Eq. 1; cj and
c′j are the n-gram bag-of-words vectors of the ut-
terances belong to the j-th and j′-th label, respec-
tively. The label correlation matrix V is used for
hierarchical label distribution learning later in §3.4.
Label correlation in context. The LCC module
captures the label correlation between the labels
of different utterance turns. We use two kinds of
LCC correlation functions, i.e., label correlation
functions between utterance turns from different
users (t) and the same user (t′), which are defined
as follows:

t(yi−1 = lj , yi = lj′) = T(lj ,lj′ ),

t′(yi−2 = lj , yi = lj′) = T ′(lj ,lj′ )
,

(3)

where lj and lj′ denote the j-th and j′-th labels.
T and T ′ are two n × n matrices initialized ran-
domly and trained by LCC-based label distribution
learning, which is introduced next.

3.4 Multi-faceted CRF layer
Given a sequence of utterances, a linear chain CRF
can be used to predict the label of an utterance:

p(y|x) = 1

Z(x)
exp

(∑
i

ψ(xi, yi)

)
, (4)

where Z is a normalization function, and

ψ(x, y) =
∑
i

s(yi, x) +
∑
i

t(yi−1, yi), (5)

where t is defined in Eq. 3. s is the emission func-
tion. Next, we introduce the components of our
multi-faceted CRF layer, including the LCC-based
feature function and the LCT-based label distribu-
tion learning.
LCC-based feature function. The LCC-based
feature function contains two parts: the emission
function and the LCC-based transition function.
First, the emission function s is defined as follows:

s(yi, x) = softmax(hi), (6)

where hi is the representation of each utterance xi.
Second, the LCC-based feature function is defined

as follows:

ψ′(x, y) =
1

2

(
ψ(x, y) +

∑
i

s(yi, x)

+
∑
i

t′(yi−2, yi)

)
,

(7)

where t′, ψ and s and are defined in Eq. 3, 5 and 6,
respectively.
LCT-based label distribution learning. We get
the estimated gold label distribution ỹ for CRF
label distribution learning. We calculate the esti-
mated distribution ỹi from the original distribution
yi of the i-th utterance as follows:

ỹi = λV yi + yi, (8)

where λ denotes how much the original one-hot
distribution is redefined and V is the matrix that
estimates the LCT in Eq. 2.

Our training objective is the KL-divergence loss
except that we replace gold label y with estimated
gold label ỹ:

L =
∑
y

q(y|x) log q(y|x)
p(y|x)

, (9)

where q(y|x) is the target distribution to learn, we
use the probability of ỹ given x for q(y|x); p(y|x)
is the predicted distribution.

The KL loss can be transformed into the fol-
lowing function by expanding and marginalizing
p(y|x) (Liu and Hockenmaier, 2020):

L =
∑
i

∑
yi

{q(yi|x) log q(yi|x)}

−
∑
y

{q(y|x)ψ′(y, x)}+ logZ(x),
(10)

where q is the target distribution, ψ′ is the feature
function, Z is the normalization function.

4 Experimental Setup

We conduct experiments to answer the following
research questions: (RQ1) How does BERT-MCRF
compare to baselines on the MDMD test set?
(RQ2) What is the impact of the number of labels
on the performance of BERT-MCRF? (RQ3) What
is the influence of different LCT and LCC settings?
(RQ4) What do the components of BERT-MCRF
contribute to its overall performance?
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4.1 Dataset

We conduct experiments on an extension of the
MDRDC dataset released by Zhang et al. (2021b).
The original MDRDC dataset is for single-label
dialogue malevolence detection; it contains 6,000
dialogues (with 10,299 malevolent utterances and
21,081 non-malevolent utterances) annotated by
Amazon MTurk workers.

To conduct the evaluation for multi-label dia-
logue malevolence detection, we re-annotate the
validation and test set of the MDRDC dataset using
Amazon MTurk following the annotation protocols
in (Zhang et al., 2021b). We select workers with
a test score of at least 90, 500 approved human
intelligence tasks (HITs) and 98% HIT approval
rate and the location is limited to countries where
English is one of the official languages. The work-
ers are also asked to consider dialogue context and
implicit words. Before the annotation, we warn
the crowd workers that the task may contain malev-
olent content. The crowd workers are asked to
annotate each utterance of the dialogue with 18
3rd-level labels in the taxonomy of Zhang et al.
(2021b). We ask three workers to annotate the data.
Cohen’s multi-Kappa value of the three workers is
0.701 for the re-annotated data, which is considered
substantial (McHugh, 2012).

Malevolent Non-malevolent
Total

Valid. Test Valid. Test

1-label 413 733 2,088 4,276 7,510
2-label 264 574 – – 838
3-label 22 85 – – 107
4-label 2 5 – – 7
Total 701 1,397 2,088 4,276 8,462

Table 1: Statistics of the validation and test sets of
MDMD.

The MDMD dataset statistics are shown in Ta-
ble 1. We have re-annotated 8,462 utterances
in total, with 2,098 malevolent and 6,364 non-
malevolent utterances. There are 7,510 (88.7%),
838 (9.9%), 107 (1.3%) and 7 (0.1%) utterances
for 1-label, 2-label, 3-label and 4-label group sep-
arately. For all the collected data, 952 (11.3%) of
8,462 utterances have 2–4 labels. For the malev-
olent utterances, 952 (45.4%) of 2,098 utterances
have 2–4 labels, which indicates the importance of
MDMD task considering the percentage of multi-
label utterances. We use the training, validation,
and test splits provided in (Zhang et al., 2021b),

which has a ratio of 7:1:2.

4.2 Baselines

We compare BERT-MCRF against BERT and
BERT-CRF. The two baselines are competitive
since BERT with a softmax classifier performs well
in a previous SDMD task (Zhang et al., 2021b), and
BERT-CRF with modified encoder for separate sen-
tences is the state-of-the-art model for sequence
labeling task (Cohan et al., 2019).

4.3 Implementation details

We use the ‘bert-base-uncased’ version of BERT
as the pretrained model with a vocabulary size of
30,522. The max sequence length is set to 512. For
BERT-MCRF, we first do BERT fine-tuning with
learning rate 2e-5, and BERT is fine-tuned with 2
epochs. Then, we train the multi-faceted CRF layer
and fine-tune BERT together, with multi-faceted
CRF layer learning rate 7e-4 and BERT-encoder
learning rate 5e-7, we train 10 epochs together. The
batch size is 8 for training, validation, and test. The
dropout ratio is 0.1. More runtime and parameter
details are provided in Appendix B. All the neural
models are trained on GeForce GTX TitanX GPUs.

4.4 Evaluation metrics

We use the precision, recall, F1 score, and Jaccard
score as our evaluation metrics (Manning et al.,
2008). We report the macro scores since the data is
imbalanced in terms of labels (Zhang et al., 2021b).

5 Results and Analysis

5.1 RQ1: Comparison with baselines

To determine how MCRF compares to baseline
models on the MDMD task, we report the results
in terms of precision, recall, F1, and Jaccard score
in Table 2. In terms of overall performance, adding

Model Precision Recall F1 Jaccard

BERT 67.73 33.59 42.32 37.25
BERT-CRF 69.62 33.57 43.30 40.83
BERT-MCRF 82.99 38.12 49.20 43.46

Table 2: Main results of MCRF on the MDMD test set.

LCT and LCC improves the performance of dia-
logue malevolence detection. In general, the per-
formance of BERT-MCRF is better than BERT and
BERT-CRF. The precision, recall, F1, and Jaccard
score of BERT-MCRF outperform the second-best
model (i.e., BERT-CRF) by 16.1%, 11.9%, 12.0%,
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(a) LCT confusion matrix V . (b) LCC transition matrix T . (c) LCC transition matrix T ′.

Figure 4: Visualization of LCT and LCC.

and 6.1%, respectively. The results in terms of pre-
cision and recall indicate that incorporating LCT
and LCC provides benefits to both precision and
recall, and more benefits to precision than recall.

5.2 RQ2: Performance of different label
groups

We divide the samples in the MDMD test set into
different groups according to the number of la-
bels. We report the Jaccard scores of different label
groups in Table 3.

Model 1-label 2-label 3-label 4-label

BERT 40.16 11.84 11.48 8.00
BERT-CRF 44.02 13.06 11.89 11.33
BERT-MCRF 46.39 15.23 12.88 10.00

Table 3: Jaccard scores of different label groups.

First, the results suggest that BERT-MCRF has
better performance with regard to different label
groups. BERT-MCRF’s Jaccard scores for the 1-
label, 2-label, and 3-label are 5.4%, 16.6%, 8.3%
higher than the second best performing approach.
An exception is that for the 4-label group, the result
of BERT-MCRF is lower than BERT-CRF. The rea-
son is that the size of 4-label utterances is small for
the test set and the performance of 4-label changes
dramatically when we evaluate at different epochs.
Second, the results show that the MDMD task be-
comes more challenging as the number of labels
increases. The Jaccard score results for all the mod-
els in Table 3 decrease as the number of labels
increases.

5.3 RQ3: Influence of the LCT and LCC
settings

First, we study the influence of the hyperparameter
λ of LCT in Eq. 8, as shown in the upper part of
Table 4. As λ increases, the performance increases

and then decreases. The reason is that as with
overly large λ, the original one-hot distribution is
redefined too much as to make the learning target
deviate from the real target. We visualize the LCT
confusion matrix V (Eq. 8) in Figure 4(a). Yel-
low or blue suggests the correlation is low or high,
separately. The variation of correlation value sug-
gests our model can capture the label correlation in
taxonomy, which contributes to final results.

Settings Precision Recall F1 Jaccard

LCT (λ = 0) 83.60 36.78 47.96 42.75
LCT (λ = 1/2) 84.58 37.04 48.50 42.85
LCT (λ = 1) 82.99 38.12 49.20 43.46
LCT (λ = 2) 82.28 38.09 49.10 42.98

LCC (T ) 84.37 37.08 48.58 43.43
LCC (T ′) 84.43 35.99 47.10 42.62
LCC (T+T ′) 82.99 38.19 49.20 43.46

Table 4: BERT-MCRF performance w.r.t. different
LCT and LCC settings. λ is the hyperparameter in
Eq. 8, T and T ′ are the transition matrices by Eq. 3.

Second, we study the influence of different tran-
sition function matrices of LCC, i.e., T is LCC
between the same user, T ′ is LCC between dif-
ferent users, as shown in the bottom part of Ta-
ble 4. For the three LCC settings, T has better
recall thus improving the final performance com-
pared with T ′; T ′ has the better precision than the
other two groups, but he overall performance is the
lowest; BERT-MCRF with both T and T ′ combine
the advantages to achieve the best performance.
We visualize the LCC confusion matrices T in Fig-
ure 4(b) and T ′ in Figure 4(c); yellow and blue
suggests a negative and positive correlation, respec-
tively. First, LCC captured by transition matrices
can be both positive and negative, e.g., for T ′, “non-
malevolent” is likely to transit to “non-malevolent”
and not-likely to transit to “immoral & illegal”;
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second, the LCC captured by T and T ′ is different.

5.4 RQ4: Ablation study

We perform an ablation study on BERT-MCRF by
removing LCT or LCC. The results are reported
in Table 5. The results suggest that both LCC and
LCT are important for BERT-MCRF.

First, removing LCC decreases the performance
of BERT-MCRF by 2.9%, 1.3%, and 0.1% for re-
call, F1 and Jaccard, respectively, while the pre-
cision increase by 1.7%. LCC has a positive in-
fluence since it considers both the LCC from the
same user and different users, while BERT-CRF
only contains the label correlation from different
users, as explained in §5.3.

Second, removing LLCT decreases the perfor-
mance of recall, F1 and Jaccard score by 3.7%,
2.5%, and 1.6%; LLCT has a positive influence
since it predicts estimated gold labels to improve
model learning. An exception is that the precision
increases by 0.7%, which is not significant, and the
reason might be that BERT-MCRF tends to predict
more labels, which results in a much higher recall
but decreases precision a bit.

Model Precision Recall F1 Jaccard

BERT-MCRF 82.99 38.19 49.20 43.46
−LCC 84.37 37.08 48.58 43.43
−LLCT 83.60 36.78 47.96 42.75
−PLCT 69.34 33.79 43.27 40.86
−LCT 69.87 33.16 42.62 40.83

Table 5: Ablation study results. Note that LCC of dif-
ferent users T is already captured by BERT-CRF, there-
fore the ablation of LCC keeps T but deletes T ′.

Third, removing PLCT decreases the perfor-
mance of precision, recall, F1, and Jaccard by
16.4%, 11.5%, 12.1%, and 6.0%. The performance
suggests that PLCT has a positive influence on the
results. The fixed correlation between the 3rd-level
labels with the same node based on the taxonomy
tree is captured well by the position embedding.

Fourth, removing both LLCT and PLCT de-
creases the performance of recall, F1, and Jac-
card score by 15.8%, 13.2%, 13.4%, and 6.1%.
Compared with the results with LLCT ablation and
PLCT ablation, both LLCT and PLCT have a posi-
tive influence on the BERT-CRF model. Previously,
some methods have utilized label correlation in
training data to improve multi-label classification,
i.e., label co-occurrence (Zhang et al., 2018). How-
ever, for MDMD, there is no label co-occurrence

information; our results suggest that LCT is able
to increase the MDMD; the reason might be that
the LCT reduces overfitting of single-label training
data.

5.5 Case study

We randomly select two examples from the test set
to illustrate the performance of BERT, BERT-CRF,
and BERT-MCRF (see Table 7 in Appendix A.2).

First, for the first example, BERT-MCRF pre-
dicts the right labels “violence” and “self-hurt”.
The LCT correlation value between label “violence”
and “self-hurt” is 0.1923, and suggests that LCT
may help predict the two labels together. Second,
in the second example, BERT-MCRF predicts a se-
quence of labels for different dialogue turns more
accurately than BERT and BERT-CRF. We found
that the LCC value between “non-malevolent” and
“non-malevolent” is 0.2725, while the LCC value
between “non-malevolent” and “immoral & ille-
gal” is −0.1183, which implies that it helps BERT-
MCRF predict the right label “non-malevolent” for
the third utterance considering the label of the first
utterance. In summary, LCC is able to boost the
performance of BERT-MCRF. In addition, there are
also cases where BERT-MCRF fails. An example
is the label with implicit expression, i.e., “deceit”,
which leaves room for further improvement by con-
sidering implicit meaning.

6 Conclusion and Future Work

We have studied multi-label dialogue malevolence
detection and built a dataset MDMD. The dataset
statistics suggest that the dataset quality is sub-
stantial and that it is essential to do multi-label
dialogue malevolence detection as almost 12% of
the utterances have more than one malevolent label.
We have proposed BERT-MCRF by considering
label correlation in taxonomy (LCT) and label cor-
relation in context (LCC). Experimental results
suggest that BERT-MCRF outperforms competi-
tive baselines. Further analyses have demonstrated
the effectiveness of LCT and LCC.

A limitation of BERT-MCRF is that it is not
good at detecting implicitly malevolent utterances,
e.g., “deceit.” As to future work, we plan to address
this type of utterance and investigate how to en-
hance BERT-MCRF in terms of implicit multi-label
dialogue malevolence detection by semi-supervised
learning as there are large-scale unlabeled datasets.
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7 Ethical Considerations

The data collection process for the re-annotated
MDMD dataset follows the regulations of Twitter.
The data is anonymized so the data can not be
linked to a particular user. The crowd workers
are fairly compensated with a minimum wage per
hour (using the minimum wage from a Western
European country). The data collection process
has been approved by the ethics committee of the
authors’ university. The data will be made available
to researchers that agree to the ethical regulations
of the ethics committee. Characteristics and quality
control of the re-annotated dataset are described in
Section 5.

The claims in the paper match the results and
the model can be generalized to multi-label dia-
logue safety detection tasks. This paper can be
used for the deployment of dialogue systems, hop-
ing to improve the ability of dialogue systems to
detect malevolent human natural language. Multi-
label classification has a positive impact on the
application of dialogue systems. Detecting and fil-
tering dialogue responses that are not malevolent
may decrease the diversity of the dialogue. For the
deployment of non-malevolent dialogue systems,
it is better to consider the extent of malevolence
according to malevolence label counts of each ut-
terance or the perception of different labels.

This paper does not involve identity characteris-
tics nor does it categorize people.
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APPENDICES

We present additional details on our experimental
in the appendices below. We include the validation
performance for the main result (Appendix A.1);
the case study (Appendix A.2); our source code
(Appendix A.3); the average runtime of each mod-
ule and detailed information about the parameters
(Appendix B); further details about the newly cre-
ated dataset that we release with this paper (Ap-
pendix C); and ethical considerations of this work
(Appendix 7).

A Experimental Results

A.1 Performance of BERT-MCRF on the
validation set

In terms of validation performance, we report
the validation performance of comparing BERT-
MCRF to BERT-classifier and BERT-CRF, as
shown in Table 6. BERT-MCRF surpasses both
BERT and BERT-CRF in dialogue malevolence de-
tection. Compared to the second-best model, the
precision, recall, F1, and Jaccard score of BERT-
MCRF increase by 9.1%, 8.8%, 11.4%, and 4.2%,
respectively. This suggests that for the validation
set, BERT-MCRF is better than BERT and BERT-
CRF for dialogue malevolence detection. More-
over, the results of the validation set and the test set
are similar. Compared to results of the test set, F1
of the validation set increase by 2.8%, while Jac-
card decrease by 1.8%. This suggests the test result
is consistent with validation. 1, but lower Jaccard,
as shown in Table 2 (presented in Section 5) and
Table 6.

Metric Precision Recall F1 Jaccard

BERT 64.14 36.33 43.97 37.02
BERT-CRF 73.05 35.84 44.81 40.89
BERT-MCRF 80.39 39.82 50.58 42.68

Table 6: Main results of BERT-MCRF on the multi-
label validation set.

A.2 Case study examples

We show two examples for case study that explains
how LCT and LCC work, as shown in Table 7; the
description is in §5 of the main paper.

A.3 Code

Our code is uploaded to https://github.com/

repozhang/MCRF with the paper.

User A: S** my head into a brick building while
having a steal toe boot r** up my a** would hurt
less.

BERT: non-malevolent.
BERT-CRF: non-malevolent.
BERT-MCRF: violence, self-hurt.
Gold: violence, self-hurt.

User A: Mom: I can’t believe you haven’t seen
birdman , Edward Norton is in it ! n Me: I know
she gets me.
User B: Hope Gasols forgive me when I marry him.
User A: Invite me so i can get drunk and be inap-
propriate.

BERT: non-malevolent; non-malevolent; immoral
& illegal.
BERT-CRF: non-malevolent; non-malevolent; im-
moral & illegal.
BERT-MCRF: non-malevolent; non-malevolent;
non-malevolent.
Gold: non-malevolent; non-malevolent; non-
malevolent.

Table 7: Case study. Upper: utterances and labels of
example 1; bottom: utterances and labels of example 2.

B Runtime and Parameters

In terms of average runtime, the time cost for our
BERT-MCRF model is acceptable. The time costs
for BERT-MCRF is 2 hours. The run time of BERT-
CRF is the same as BERT-MCRF and the run-time
for BERT is less than 1 hour.

In terms of parameters, BERT-MCRF has
109,496,802 parameters, BERT has 109,496,118
parameters, BERT-CRF has 109,496,478 parame-
ters. As described in §4.3, in terms of the BERT-
MCRF model, we first fine-tune BERT. We choose
the best result of learning rate 2e-5 and training
epochs 2. Second, we train multi-faceted CRF
layer with BERT together, where BERT is not com-
pletely frozen but has a relatively small learning
rate. In this step, the learning rate for BERT is 5e-7
and for the multi-faceted CRF layer is 7e-4. The
reason that the BERT learning rate is small during
the joint training is that we have fine-tuned BERT
for 2 epochs before feeding the representations to
multi-faceted CRF Layer. We train BERT-MCRF
for 10 epochs and choose the best result based on
the validation set results. For the λ parameter in
Eq. 8, we use the value range [0, 0.5, 1, 2] and se-
lect the best result. In terms V ′ in Eq. 2, we use
n-gram settings of [1, 2, 3, 4], and select 2 for the
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final estimation of V ′ based on the best result. In
terms of the BERT classifier, the learning rate is
2e-5, the epoch number is 2. In terms of BERT-
CRF, the parameter selection process is similar to
BERT-MCRF, the BERT fine-tuning parameters
for the first step same to BERT-MCRF; and for the
second step that trains both BERT and CRF, the
final learning rate is 5e-7 for BERT and 3e-4 for
CRF layer.

C Dataset

Our data is uploaded to https://github.com/

repozhang/malevolent_dialogue with the paper.
The statistics and splits are described in §4.1. The
language of the dataset is in English. For data pre-
possessing, we use all the data from the dataset.
In terms of the data collection process, we follow
the previous research (Zhang et al., 2021b), ex-
cept that the workers are asked to choose multiple
choices from the labels. The label taxonomy is
grounded in negative emotion, negative psycho-
logical behavior, and unethical issues. It includes
three levels of labels, with two, eleven, and eigh-
teen labels in 1st-level, 2nd-level, and 3rd-level
labels. The third level labels, as shown in Figure 4,
includes ‘non-malevolent’, ‘unconcernedness’, ‘de-
tachment’, ‘blame’, ‘arrogance’, ‘anti-authority’,
‘dominance’, ‘deceit’, ‘negative intergroup attitude
(NIA)’, ‘violence’, ‘privacy invasion’, ‘obscenity’,
‘phobia’, ‘anger’, ‘jealousy’, ‘disgust’, ‘self-hurt’,
‘Immoral and illegal’. For the 2nd-level categories,
the taxonomy put the set of 3rd-level categories
that have correlations in linguistic characteristics
with each other into the same group (Zhang et al.,
2021b).
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