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Abstract

We consider event extraction in a generative
manner with template-based conditional gen-
eration. Although there is a rising trend of
casting the task of event extraction as a se-
quence generation problem with prompts, these
generation-based methods have two signifi-
cant challenges, including using suboptimal
prompts and static event type information. In
this paper, we propose a generative template-
based event extraction method with dynamic
prefix (GTEE-DYNPREF) by integrating con-
text information with type-specific prefixes to
learn a context-specific prefix for each con-
text. Experimental results show that our model
achieves competitive results with the state-of-
the-art classification-based model ONEIE on
ACE 2005 and achieves the best performances
on ERE. Additionally, our model is proven to
be portable to new types of events effectively.

1 Introduction

Event extraction is an essential yet challenging
task for natural language understanding. Given
a piece of text, event extraction systems need to
recognize event triggers with specific types and
the event arguments with the correct roles in each
event record according to an event ontology, which
defines the event types and argument roles (Dod-
dington et al., 2004; Ahn, 2006). As an example,
the context in Figure 1 contains two event records,
a Transport event triggered by “returned” and
an Arrest-Jail event triggered by “capture”.
In the Transport event, the Artifact is “the
man”, the Destination is “Los Angeles” and
the Origin is “Mexico”. In the Arrest-Jail
event, the Person is “the man”, the Time is
“Tuesday” and the Agent is “bounty hunters”. In
this work, we focus on the task setting of extracting
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events without gold entity annotations, which is
more practical in real-world applications.

Most of the event extraction work treats the
extraction of event triggers and event arguments
as several classification tasks, either learned in a
pipelined framework (Ji and Grishman, 2008; Liu
et al., 2020; Du and Cardie, 2020; Li et al., 2020)
or a joint formulation (Li et al., 2013; Yang and
Mitchell, 2016; Nguyen et al., 2016; Liu et al.,
2018; Wadden et al., 2019; Lin et al., 2020).

There is a rising trend of casting the task of event
extraction as a sequence generation problem by ap-
plying special decoding strategies (Paolini et al.,
2021; Lu et al., 2021) or steering pretrained lan-
guage models to output conditional generation se-
quences with discrete prompts (Li et al., 2021; Hsu
et al., 2021). Compared with classification-based
methods, this line of work is more data-efficient
and flexible, which requires less annotated data to
achieve acceptable model performances, being eas-
ier to extend to new event types by slightly modify-
ing the designed prompts and decoding strategies.

However, these generation-based methods have
two significant challenges, which impede achiev-
ing competitive results with the classification-based
methods. (1) suboptimal prompts: First, they
manually design prompts for each event type (Li
et al., 2021; Hsu et al., 2021), which are subopti-
mal without tuning and largely affect the model
performances. (2) static event type information:
Second, when extracting events of a particular type,
recent generation-based methods will receive the
same event type information concerning only the
running event type, regardless of the associations
between other possible event types.

To alleviate the above two challenges, we pro-
pose a generative template-based event extraction
method with dynamic prefixes, denoted as GTEE-
DYNPREF. As demonstrated in Figure 1, we follow
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Figure 1: Comparision between the generation-based methods and our method GTEE-DYNPREF.

the previous work (Li et al., 2021; Hsu et al., 2021),
extracting event records one type by one type, us-
ing the pretrained encoder-decoder language model
BART (Lewis et al., 2020) for conditional genera-
tion. For each event type, we first initialize a type-
specific prefix consisting of a sequence of tunable
vectors as transformer history values (Li and Liang,
2021). The type-specific prefix offers tunable event
type information for one single type. Then we inte-
grate context information with all type-specific pre-
fixes to learn a context-specific prefix, dynamically
combining all possible event type information.

We evaluate our model on two widely used
event extraction benchmarks, ACE 2005 and
ERE. Experimental results show that our model
achieves competitive results with the state-of-the-
art classification-based model ONEIE on ACE
2005 and achieves the best performances on ERE.
Additionally, according to the transfer learning re-
sults, our model also can be adapted to new types
of events effectively.

2 Related Work

This paper is related to the following lines of work.

2.1 Classification-based Event Extraction

Event extraction is usually formulated as a se-
quence labeling classification problem (Nguyen
et al., 2016; Wang et al., 2019; Yang et al., 2019;
Wadden et al., 2019; Liu et al., 2018). Some of
them incorporate global features and apply joint
inference (Lin et al., 2020; Li et al., 2013; Yang
and Mitchell, 2016) to collectively model event de-
pendencies. Additionally, recent work casts event
extraction as a machine reading comprehension
(MRC) problem (Liu et al., 2020; Du and Cardie,
2020; Li et al., 2020) by constructing questions to
query event triggers and arguments.

Our work treats event extraction as a condi-
tional generation task, which is more flexible and
portable, which reduces the burden of annotation.

2.2 Generation-based Event Extraction

There is a rising line of work casting event extrac-
tion as a sequence generation problem, such as
transforming into translation tasks (Paolini et al.,
2021), generating with constrained decoding meth-
ods (Lu et al., 2021) and template-based condi-
tional generation (Li et al., 2021; Hsu et al., 2021).

The two closest methods above (Li et al., 2021;
Hsu et al., 2021) both utilize manually designed
discrete templates, which caused the sub-optimal
problem. Besides, the applied static type instruc-
tion does not consider the connections between
events within the same context. We replaced the
static type instructions with the dynamic prefixes,
which are continuous and tunable vectors during
training, combining the manual event templates
and alleviating the sub-optimal problem.

2.3 Prompt Tuning

There is a line of work using specific sentence tem-
plates with pre-trained models to solve natural lan-
guage understanding tasks. It natural to come up
with prefix-style (Brown et al., 2020) or cloze-style
(Petroni et al., 2019) prompts based on human intro-
spection, which are called “descrete prompts”. Ex-
isting works on discrete prompt tuning(Shin et al.,
2020; Gao et al., 2021; Schick et al., 2020) de-
pend on verbalizers to map from class labels to
answer tokens. These methods are proven to be
effective in the few-shot setting for text classifica-
tion and conditional text generation tasks (Schick
and Schütze, 2021b,a,c). There are also methods
that explore continuous prompts directly operating
in the embedding space of the model, like tuning
on vectors(Li and Liang, 2021; Lester et al., 2021;
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Figure 2: The framework of our base model GTEE-BASE. We use different colors to differentiate different
components as follows. “ ” for the context, “ ” for the template, “ ” for the type instruction, “ ” for
the encoder-decoder language model, and “ ” for the answered prompt as output.

Tsimpoukelli et al., 2021), initializing with discrete
prompts(Zhong et al., 2021; Qin and Eisner, 2021;
Hambardzumyan et al., 2021) and hybrid prompt
tuning(Liu et al., 2021b,a; Han et al., 2021).

3 Generative Template-based Method

We revisit the task of event extraction as the pro-
cess of conditional generation and present our base
model (GTEE-BASE) as illustrated in Figure 2.

3.1 Problem Statement
In the conditional generation task formulation for
event extraction, the whole extraction process for
a textual context is divided into several subtasks
according to event types. Specifically, given an
event ontology O with an event type set E =
{ei|i ∈ [1, |E|]}, the input in each subtask Sei,C
for event type ei consists of a context C and a de-
signed prompt Pei . And the output is the answered
prompts Aei , containing extracted event records.

We take one single conditional generation sub-
task Sei,C for event type ei as example to explain
the following content.

3.2 Basic Architecture
As shown in Figure 2, the conditional generation
subtask is modeled by a pretrained encoder-decoder
language model (LM), BART (Lewis et al., 2020)
and T5 (Raffel et al., 2020). In the generation
process, the encoder-decoder LM models the con-
ditional probability of selecting a new token yi
given the previous tokens y<i and the encoder in-
put X . Therefore, the entire probability p(Y|X ) of
generating the output sequence Y given the input
sequence X is calculated as

p(Y|X ) =

|Y|∏
i=1

p(yi|y<i,X )

X = [Pei ;[SEP]; C]
Y = Aei

(1)

where [ ; ] denotes the sequence concatenation op-
eration and [SEP] 1 is the corresponding separate
marker in the applied encoder-decoder LM.

3.3 Prompt Design

Similar to the state-of-the-art end-to-end genera-
tive method DEGREE-E2E (Hsu et al., 2021) for
event extraction, the prompt Pei for subtask Sei,C
in our base model GTEE-BASE contains the type
instruction Iei and the template Tei .

Type Instruction. A short natural language se-
quence Iei describing the event type ei in the sub-
task. We use the pattern “Event type is [MASK].”
to construct type instructions for the event type set
E . For example, the type instruction for event type
Meet is “Event type is Meet.”.

Template. A type-specific pattern Tei , which con-
tains several placeholders, reflecting how the argu-
ments participant in the event. We use two types of
placeholdes, <trg> and <arg>s, for representing
trigger and arguments, respectively. The template
is consists of a trigger part and a argument part.
The two parts are concatenated by a new seperate
marker <IN_SEP>. As illstrated in Figure 2, the
trigger part is “Trigger <trg>”, which is identical
for all event types. The argument part is specific
to event type ei. Due to the manual efforts of de-
signing and searching for an optimal template, we
follow Li et al. (2021) to reuse the pre-defined argu-
ment templates 2 in the ontology O. The original
pre-defined argument templates natively contain

1In this paper, we use [*] to represent the special tokens
used in pretrained LM and <*> to indicate the user-defined
special tokens.

2The argument template and all the used ontologies can be
accessed at https://github.com/raspberryice/
gen-arg except for ERE. Since the ERE event types are
subsets of the RAMS AIDA ontology and the KAIROS on-
tology, following Li et al. (2021), we also reuse the argument
templates from these ontologies.
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numeric labels for each <arg> placeholder (as
<arg1>) and the slot mappings M to the corre-
sponding argument roles. We also follow Li et al.
(2021) to remove these numeric labels.

Ground Truth Construction. For each event
type ei in the context C, we construct the ground
truth sequence Gei,C for conditional generation by
filling the gold event records into the template Tei .
If there is no event record of event type ei, the
generation ground truth of the will be “Trigger
<trg>”. Otherwise, the event record is filled in
the template Tei as the output in Figure 2. If sev-
eral arguments are categorized as the same role,
these arguments are first sorted by spans and then
concatenated by “and”. If there are multiple event
records, they will be sorted by the spans of the trig-
gers, and the filled sequences will be concatenated
by a new separate marker <OUT_SEP>.

3.4 Training, Inference and Parsing

Training. The trainable parameters of our base
model GTEE-BASE are only the encoder-decoder
LM. And we use φ to denote all the trainable param-
eters. Therefore, the training target is to minimize
the negative loglikelihood of all subtasks Sei,Cj in
the training set D, where Cj denotes the j-th con-
text in D.

Lφ(D) = −
|D|∑
j=1

|E|∑
i=1

log p(Gei,Cj |Xei,Cj )

Xei,Cj = [Pei ;[SEP]; Cj ]

(2)

Inference. In the inference stage, our base model
generates sequences by beam search BEAM = 6.
The maximum sequence length is set according
to dataset statistics, which is a bit larger than the
length of the longest ground truth.

Parsing. Basically, we parse the event records
by template matching and slot mapping according
to the ontology O. Please note that not all the
generated output sequences are valid. For each
generated sequence, we will first try to parse a
trigger. If failed, we will skip the sequence. Then
if we fail to match <IN_SEP> or the argument
part of the template Tei , we will skip the argument
parsing and only keep a trigger.

3.5 Irrelevant Event Types

By investigating the parsed event records, we find
that our model has the bias to generate event
records even for irrelevant event types. This will be

fatal when the input context does not contain any
event record, which will largely hurt the precision
score and F1 score. There are 80.28% and 71.02%
sentences that do not contain any event records in
ACE 2005 and ERE, respectively.

Therefore, we propose a simple yet effective so-
lution to alleviate this problem by separately train-
ing an irrelevance classifier IC. With context C as
input, we finetune a BERT mdoel (Devlin et al.,
2019) by feeding the encoded [CLS] vector to
a MLP as a binary classifier to see whether the
context contains any event records or is entirely
irrelevant for the ontology O. It is worth noticing
that there may exist other ways to avoid the prob-
lem, as Cui et al. (2021) formulate the NER task as
a ranking task to avoid irrelevant entity types in a
similar conditional generation task setting.

4 Dynamic Prefix-Tuning

We propose dynamic prefix-tuning with task-
specific prefix and context-specific prefix to alle-
viate the two main challenges in generation-based
event extraction. The framework of our model
with dynamic prefix tuning, GTEE-DYNPREF, is
shown in Figure 3. We will introduce the dynamic
prefix-tuning step by step.

4.1 Type-Specific STATIC PREFIX

Inspired by PREFIX-TUNING (Li and Liang, 2021),
we use event type-specific prefix STAPREF, which
is a pair of two transformer activation sequences
{sp, sp′}, each containing L continuous D-dim
vectors as the history values for encoder and de-
ocder, respectively. From the view of the encoder
and decoder input, in the subtask Sei,C , the prefix
is virtually prepended for the sequences X and Y
in an encoder-decoder LM.

X ′ = [spei ;X ]

Y ′ = [sp′ei ;Y]
(3)

The main advantage of these transformer activation
sequences is that they provide trainable context for
both encoder and decoder, which is also computa-
tionally achievable.

We first initialize a pair of task-specific prefixes
{spei , sp

′
ei} for each event type ei in the ontol-

ogy O. In the conditional generation subtask Sei,C ,
we then prepend the corresponding pair of task-
specific prefixes {spei , sp

′
ei} as transformer activa-

tions for the encoder and decoder.
Following Li and Liang (2021), we use a train-

able embedding tensor P ∈ R|E|×L×D to model
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Figure 3: The framework of our dynamic prefix-tuning model GTEE-DYNPREF. We use different colors to
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type-specific prefixes, “ ” for the dynamic prefix, “ ” for the encoder-decoder language model, and “ ”
for the answered prompt as output.
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Figure 4: Context-specific DYNPREF construction using
a context encoder.

the type-specific prefix sp. For the event type ei in
the ontology O, the prefix vector sptei at index t is

sptei = P [ei, t, :] (4)

The reason we call the task-specific prefix static
is that for subtasks of the same event types, the out-
put type instructions are the same. In other words,
such prefixes only preserve context concerning one
single type of event, ignoring the association be-
tween different event types.

4.2 Context-Specific DYNAMIC PREFIX

Aiming to capture the associations between differ-
ent event types when constructing trainable pre-
fixes, we present DYNPREF, which constructs
dynamic prefix with context-specific information
when prompting pretrained language models.

As shown in Figure 4, dpC has the same se-
quence length L as sp. For each position t, the
prefix vector dptC is computed by dynamically in-
tegrating all the prefix vector sptei of event type ei
in the ontology O according to the context-specific
information c by multi-head attention (Vaswani
et al., 2017). To calculate the context-specific infor-
mation c, we apply a BERT mdoel (Devlin et al.,
2019) as the context encoder by feeding the context
C as input and taking the [CLS] vector as c.

dptC =
|E|

MultiHeadAttn
i=1

({sptei , ...}, c)

c = BERT(C)[CLS]
(5)

The context-specific prefix dpC is dynamic be-
cause it takes both the type-specific information
in ontology O and the unique context information
into account when steering LMs.

Following Li and Liang (2021), we compute the
decoder transformer activation vector hi, which
is a concatenation of all layers, at time step i in
encoder-decoder LM recurrently.

hi =

{
dpiC , if i < L,
LM(yi, h<i|X ), otherwise.

(6)

The computation of the encoder transformer activa-
tion vector is similar.

4.3 Training
Except for the LM parameters φ, the additional
trainable parameters of DYNPREF include the em-
bedding tensor P and the BERT encoder modeling
context information.

Specially, we follow the training suggestions (Li
and Liang, 2021) and reparametrize the embedding
tensor P by modeling a MLP and another embed-
ding tensor P ′ ∈ R|E|×L×D′ with small dimension
D′ < D. In the end, P is computed as

P [ei, t, :] = MLP(P ′[ei, t, :]) (7)
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Dataset Split #Sents #Events #Roles

ACE05-E
Train 17,172 4202 4859
Dev 923 450 605
Test 832 403 576

ACE05-E+

Train 19,216 4419 6607
Dev 901 468 759
Test 676 424 689

ERE-EN
Train 14,736 6208 8924
Dev 1209 525 730
Test 1163 551 822

Table 1: Dataset statistics.

Now we use θ to denote all the introduced parame-
ters for DYNPREF.

The training objective is still to minimize the
negative loglikelihood in equation (2) for φ and θ.
However, in our preliminary experiments, we find
that jointly learning the LM parameters φ and the
DYNPREF parameters θ requires different scales of
training hyperparameters, being difficult to learn
the ability to extract event arguments. Therefore,
we train them separately in three steps: (1) First,
we train φ using GTEE-BASE to learn the task
information. (2) Then we fix the LM parameters φ
and mask all other event types except for ei in each
subtask Sei,C , only optimizing θ, to learn the type-
specific information for each event type. (3) Last,
we remove the masking of event types, remaining
the LM parameters fixed and only optimizing θ us-
ing DYNPREF, to capture the associations between
related event types.

5 Experiment Setup

5.1 Datasets

We conducted experiments on two widely
used event extraction benchmarks, ACE 2005
(LDC2006T06) and ERE (LDC2015E29,
LDC2015E68, and LDC2015E78). ACE 2005
dataset has 599 annotated English documents, 33
event types, and 22 argument roles. ERE contains
458 English documents, 38 event types, and 21
argument roles.

We preprocess the datasets following previous
work (Zhang et al., 2019; Wadden et al., 2019;
Du and Cardie, 2020; Lin et al., 2020; Lu et al.,
2021; Hsu et al., 2021), and obtain three datasets,
ACE05-E, ACE05-E+ and ERE-EN. Statistics of
the datasets are shown in Table 1. Compared to
ACE05-E, both ACE05-E+ and ERE-EN contain
pronoun roles and multi-token event triggers.

5.2 Evaluation Metrics
We use the same evaluation criteria in previous
work (Zhang et al., 2019; Wadden et al., 2019;
Lin et al., 2020; Lu et al., 2021; Hsu et al., 2021)
and report the Precision P , Recall R and F1 score
F1 of trigger classification (Trg-C) and argument
classification (Arg-C).

• Trg-C: a trigger is correctly classified if its
offset and event type matches the ground truth.

• Arg-C: an argument is correctly classified if
its offset, event type and role label all matches
the ground truth.

Following Lu et al. (2021), we also obtain the
offset of extracted triggers by string matching in
the input context one by one. For the predicted
argument, we find the nearest matched string to the
predicted trigger as the predicted offset.

5.3 Baseline Methods
We compare GTEE-DYNPREF with two groups
of event extraction work. The first group is about
classification-based event extraction methods.

• DYGIE++ (Wadden et al., 2019): a BERT-
based model which captures both within-
sentence and cross-sentence context.

• GAIL (Zhang et al., 2019): an RL model
jointly extracting entity and event.

• ONEIE (Lin et al., 2020): an end-to-end IE
system which employs global feature and
beam search, which is the state-of-the-art.

• BERT_QA (Du and Cardie, 2020): a MRC-
based model using multi-turns of separated
QA pairs to extract triggers and arguments.

• MQAEE (Li et al., 2020): a multi-turn ques-
tion answering system.

The second group contains generation-based
event extraction methods.

• TANL (Paolini et al., 2021): a method use
translation tasks modeling event extraction in
a trigger-argument pipeline.

• BART-GEN (Li et al., 2021): a template-
based conditional generation method.

• TEXT2EVENT (Lu et al., 2021): a sequence-
to-structure generation method.

• DEGREE-E2E (Hsu et al., 2021): an end-
to-end conditional genration method with dis-
crete prompts.

5.4 Implementation Details
We use the huggingface implementation of BART-
large as the encoder-decoder LM and BERT-large
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Name GTEE-BASE IC GTEE-DYNPREF
learning rate 1e-5 2e-5 5e-5
train batch size 32*8 16*8 32*8
epochs 40 12 30
weight decay 1e-5 1e-5 1e-5
gradient clip 5.0 5.0 5.0
warm-up ratio 10% 10% 10%
prefix length L - - 80
embedding dim D′ - - 512

Table 2: Hyperparameter setting for our models.

Model Trg-C Arg-C
P R F1 P R F1

classification-based
DYGIE++ - - 69.7 - - 48.8
GAIL 74.8 69.4 72.0 61.6 45.7 52.4
ONEIE - - 74.7 - - 56.8
BERT_QA 71.1 73.7 72.3 56.8 50.2 53.3
MQAEE - - 71.7 - - 53.4

generation-based
TANL - - 68.5 - - 48.5
BART-GEN 69.5 72.8 71.1 56.0 51.6 53.7
TEXT2EVENT 67.5 71.2 69.2 46.7 53.4 49.8
DEGREE-E2E - - 70.9 - - 54.4
GTEE-DYNPREF 63.7 84.4 72.6 49.0 64.8 55.8

Table 3: Results on ACE05-E for event extraction in the
supervised learning setting. The first group of baselines
is the classification-based methods and the second group
is the generation-based methods. Our proposed GTEE-
DYNPREF is also the generation-based method. For
each group, we bold the highest F1 scores for Trg-C and
Arg-C.

as the binary irrelevance classifier IC in §3.5 and
the context encoder in §4.2. We optimized our
models by AdamW (Loshchilov and Hutter, 2019).
The hyperparameters we used are shown in Table 2.
Each experiment is conducted on NVIDIA A100
Tensor Core GPU 40GB. For simplicity, we ran-
domly initialize3 the embedding tensor P ′.

As mentioned in §3.5, there is an overwhelm-
ing amount of negative samples compared with
positive samples. Therefore, we sample only 4%
negative samples in the train and dev split for the
three datasets, keeping all samples in test split.

6 Results

6.1 Supervised Learning Setting

We evaluate the proposed model GTEE-DYNPREF

under the supervised learning setting. Table 3
shows the comparison results on ACE05-E against
all baseline methods, and Table 4 illustrates the
results compared with the state-of-the-art in each
research line on ACE05-E+ and ERE-EN.

New state-of-the-art. As we can see from Ta-
ble 3, GTEE-DYNPREF achieves the highest
F1 scores for Trg-C and Arg-C on ACE05-E,

3The random initialization is implemented in the
torch.nn.EmbeddingLayer class in PyTorch v1.7.1.

compared with all the generation-based baselines.
Besides, GTEE-DYNPREF is competitive with
the state-of-the-art classification-based method
ONEIE, outperforming the others. In Table 4,
GTEE-DYNPREF achieves competitive Arg-C F1
score with ONEIE on ACE05-E+, while obtaining
7.5% and 4.6% gain of F1 scores for Trg-C and
Arg-C, respectively, achieving new state-of-the-art
on ERE-EN.

Trainable prompts boost the performances.
Compared with DEGREE, the event extraction
method using fixed templates, and TEXT2EVENT,
the generative event extraction method without
prompts, GTEE-DYNPREF outperforms them in
all the datasets, showing the effectiveness of the
trainable dynamic prefix with prompts.

6.2 Transfer Learning Setting

GTEE-DYNPREF utilizes the event type templates
and optimize them with context-specific informa-
tion in the dynamic prefix, which is easy to ex-
tend to a new type of event. Therefore, aiming
to verify the ability of GTEE-DYNPREF to learn
from new event types, we conduct experiments un-
der the transfer learning setting following Lu et al.
(2021). Specifically, we divide the event mentions
whose context contains no less than eight tokens
in ACE05-E+ into two subsets, denoted by src
and tgt. src contains top-10 frequent types of
events and tgt contains the rest 23 types of events.
We then randomly split each subset into a train
set and a test set with the ratio 4 : 1. Specifi-
cally, for transfer learning, we will first pre-train on
src-train to learn the task information and then
fine-tune on tgt-train for extracting the new
types of events. Table 6 shows the evaluation re-
sults on tgt-test under the transfering learning
setting and when solely training on tgt-train
without transfering knowledge. We choose the
state-of-the-art classification-based model ONEIE
and generation-based method TEXT2EVENT as the
baselines.

We can see that GTEE-DYNPREF achieves the
highest Trg-C F1 and Arg-C F1 scores, which indi-
cates that with the help of dynamic prefix, GTEE-
DYNPREF can be adopted to new types of events
more effectively. Additionally, comparing with
solely training on tgt, transfering the knowledge
from src allows GTEE-DYNPREF to achieve
higher F1 scores than ONEIE and TEXT2EVENT.
The reason may be that ONEIE relies on multi-task
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Model
ACE05-E+ ERE-EN

Trg-C Arg-C Trg-C Arg-C
P R F1 P R F1 P R F1 P R F1

ONEIE 72.1 73.6 72.8 55.4 54.3 54.8 58.4 59.9 59.1 51.8 49.2 50.5
TEXT2EVENT 71.2 72.5 71.8 54.0 54.8 54.4 59.2 59.6 59.4 49.4 47.2 48.3
DEGREE-E2E - - 72.7 - - 55.0 - - 57.1 - - 49.6
GTEE-DYNPREF 67.3 83.0 74.3 49.8 60.7 54.7 61.9 72.8 66.9 51.9 58.8 55.1

Table 4: Results on ACE05-E+ and ERE-EN for event extraction in the supervised learning setting. For each
column, we bold the highest score.

Model
ACE05-E ACE05-E+ ERE-EN

Trg-C Arg-C Trg-C Arg-C Trg-C Arg-C
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1~www GTEE-DYNPREF 63.7 84.4 72.6 49.0 64.8 55.8 67.3 83.0 74.3 49.8 60.7 54.7 61.9 72.8 66.9 51.9 58.8 55.1

GTEE-STAPREF 62.8 83.9 71.8 47.0 64.2 54.3 66.5 82.8 73.7 49.1 60.4 54.2 61.4 72.2 66.4 50.7 58.5 54.3
GTEE-BASE 61.9 83.4 71.0 46.4 63.7 53.7 65.7 82.1 73.0 48.1 59.7 53.2 60.6 71.3 65.5 49.8 57.8 53.5

Table 5: Ablation study results on ACE05-E, ACE05-E+ and ERE-EN. From GTEE-BASE to GTEE-DYNPREF,
the model performances grows stronger.

Model Trg-C Arg-C
P R F1 P R F1

ONEIE w/o TL 70.8 64.8 67.7 53.2 37.5 44.0
ONEIE w/ TL 71.0 64.4 67.6 54.7 38.1 45.0

∆performance +0.2 -0.4 -0.1 +1.5 +0.6 +1.0
TEXT2EVENT w/o TL 72.9 62.7 67.4 54.0 38.1 44.7
TEXT2EVENT w/ TL 75.1 64.0 69.1 56.0 40.5 47.0

∆performance +2.2 +1.3 +1.7 +2.0 +2.4 +2.3
GTEE-DYNPREF w/o TL 62.0 75.4 68.1 39.6 53.5 45.5
GTEE-DYNPREF w/ TL 64.6 76.7 70.2 43.7 54.1 48.3

∆performance +2.6 +1.3 +2.1 +4.1 +0.6 +2.8

Table 6: Transfer learning results on ACE05-E+.

Model ACE05-E ACE05-E+ ERE-EN
Trg-C Arg-C Trg-C Arg-C Trg-C Arg-C

GTEE-DYNPREF
w/o IC 57.2 43.8 61.7 46.4 52.1 44.7
w/ IC (trained) 72.6 55.8 74.3 54.7 66.9 55.1
w/ IC (gold) 76.3 58.4 77.2 56.9 72.3 57.4

GTEE-STAPREF
w/o IC 56.9 43.4 61.3 45.9 51.4 44.0
w/ IC (trained) 71.8 54.3 73.7 54.2 66.4 54.3
w/ IC (gold) 75.2 57.5 76.6 55.8 71.6 56.9

GTEE-BASE
w/o IC 56.4 42.8 60.8 45.1 50.7 43.1
w/ IC (trained) 71.0 53.7 73.0 53.2 65.5 53.5
w/ IC (gold) 74.6 55.9 75.1 54.8 70.7 56.5

Table 7: The F1 scores under different irrelevance clas-
sifier settings on ACE05-E, ACE05-E+ and ERE-EN.

annotated information, and TEXT2EVENT requires
learning the structural information of new types
of events. In contrast, GTEE-DYNPREF only re-
quires an easy-to-acquire template, which can be
further optimized during training.

6.3 Ablation Study

In this section, we study the effectiveness of
each proposed module by adding them into our
base model GTEE-BASE and finally get our final
model GTEE-DYNPREF. The results on ACE05-E,
ACE05-E+ and ERE-EN are presented in Table 5.

Continuous Prompt vs Discrete Prompt. We
first compare GTEE-STAPREF with GTEE-BASE.
Based on GTEE-BASE with discrete prompts,
GTEE-STAPREF further combines type-specific
prefixes as to form continuous prompts. It can be
observed that there is a 0.8%, 0.7% and 0.9% gain

for the Trg-C F1 score on ACE05-E, ACE05-E+

and ERE-EN, respectively. Additionally, there is
a 0.6%, 1.0% and 0.8% improvement for the Arg-
C F1 score, demonstrating the effectiveness and
flexibility of STAPREF to model the type-specific
information.

Dynamic Prefix vs Static Prefix. Next we com-
pare GTEE-DYNPREF with GTEE-STAPREF to
study the advantages of constructing dynamic pre-
fix. On the basis of GTEE-STAPREF, integrat-
ing context-specific information leads to a constent
gain for Trg-C F1 score on all the datasets as 0.8%,
0.6% and 0.5%, respectively. There can also be
observed a 1.5%, 0.5% and 0.8% increase for the
Arg-C F1 scores, respectively. It indicates that
integrating context-specific information into type-
specific information and transforming static prefix
to dynamic is beneficial for generative template-
based event extraction.

6.4 Irrelevance Classifier

Our goal of the irrelevance classifier IC is to rec-
ognize the context that does not contain any event
records in a given ontology O. According to §3.5,
we train an IC and use it for each dataset sepa-
rately. Please note that on one specific dataset, we
will use the same IC for all the experiments cor-
responding to that dataset. The accuracy of IC is
95.4%, 93.5% and 94.2% for ACE05E, ACE05E+

and ERE-EN, respectively. To further study the
influence of IC, we compare the performances of
using no IC, trained IC, and gold IC. The compared
F1 scores are listed in Table 7.

First, we find that with the help of our trained
ICs on each dataset, the Trg-C and Arg-C F1 scores
have been improved a lot by more than ten percent-
age points, indicating the necessity of IC. Second,
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Figure 5: Intrinsic evaluation results on ACE05-E+.

by replacing the trained IC with the oracle gold IC
results, we can still observe possible increasements
for F1 scores, suggesting the existence of likely
chances for further optimizing IC performances.
We leave the optimization for IC as future work.

6.5 Intrinsic Evaluation
We study the intrinsic characteristics of GTEE-
DYNPREF by showing the influences of model hy-
perparameters on ACE05-E+.

Prefix length L. We first study the impact of
prefix length L by grid search in {L|L = 10 ∗
k, k ∈ N ∧ k ≤ 12}. Figure 5(a) shows the Trg-C
and Arg-C F1 scores. We can observe that both Trg-
C and Arg-C F1 scores increase as the prefix length
L increases to 80, afterward, a slight fluctuation.
We think the longer L introduces more trainable
parameters and a more vital ability to model the
context-specific type information. Therefore, we
choose 80 as the prefix length in GTEE-DYNPREF.

Embedding dimension D′. Similarly, we study
the impact of the dimension D′ of the embedding
tensor P ′ by increasing from 64 to 1024. The re-
sults of Trg-C and Arg-C F1 scores are illustrated
in Figure 5(b). We find that although the bigger
embedding dimension D′ theoretically provides ex-
pressive type-specific information and improves
the F1 scores when D′ <= 512, the continual im-
provement is interrupted when the embedding di-

mension is around 512. Thus we set the embedding
dimension D′ = 512 in GTEE-DYNPREF.

7 Conclusion

In this paper, we studied event extraction in the
template-based conditional generation manner. We
proposed the dynamic prefix tuning model GTEE-
DYNPREF for event extraction. On the one hand
the method constructs tunable prefixes to model
type-specific information and on the other hand
GTEE-DYNPREF captures the associations be-
tween event types and calculates a context-specific
prefix when steering pretrained language models.
Experimental results show that our model achieves
competitive results with the state-of-the-art on ACE
2005, which is also proven to be portable to new
types of events effectively.

8 Ethical Consideration

Event extraction is a standard task in NLP. We do
not see any significant ethical concerns. Our work
is easy to adapt to new event types by offering some
examples and pre-defined templates. Therefore, the
expected usages of our work is to identify interest-
ing event records from user textual input such as a
piece of sentence or document.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments and suggestions. This work is sup-
ported by National Natural Science Foundation of
China (No. U19B2020 and No. 62106010).

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8, Sydney,
Australia. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Proceed-
ings of Advances in Neural Information Processing
Systems, volume 33, pages 1877–1901. Curran Asso-
ciates, Inc.

5224

https://aclanthology.org/W06-0901
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang.
2021. Template-based named entity recognition us-
ing BART. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1835–1845, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The automatic content extrac-
tion (ACE) program – tasks, data, and evaluation. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 671–683,
Online. Association for Computational Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4921–4933, Online. Association for
Computational Linguistics.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. PTR: prompt tuning with rules
for text classification. CoRR, abs/2105.11259.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang,
and Nanyun Peng. 2021. DEGREE: a data-
efficient generative event extraction model. CoRR,
abs/2108.12724.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In Pro-
ceedings of ACL-08: HLT, pages 254–262, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020. Event
extraction as multi-turn question answering. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 829–838, Online. Association
for Computational Linguistics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 894–908, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Association
for Computational Linguistics.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021a. P-tuning v2: Prompt

5225

https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
http://arxiv.org/abs/2105.11259
http://arxiv.org/abs/2105.11259
http://arxiv.org/abs/2108.12724
http://arxiv.org/abs/2108.12724
https://aclanthology.org/P08-1030
https://aclanthology.org/P08-1030
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
http://arxiv.org/abs/2110.07602


tuning can be comparable to fine-tuning universally
across scales and tasks. CoRR, abs/2110.07602.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-based
graph information aggregation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1247–1256, Brussels,
Belgium. Association for Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
understands, too. CoRR, abs/2103.10385.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2795–2806, Online. Association for Computational
Linguistics.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016. Joint event extraction via recurrent neural
networks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 300–309, San Diego, California.
Association for Computational Linguistics.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai,
Cícero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation be-
tween augmented natural languages. In Proceedings
of 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:140:1–140:67.

Timo Schick, Helmut Schmid, and Hinrich Schütze.
2020. Automatically identifying words that can serve
as labels for few-shot text classification. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5569–5578, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schütze. 2021b. Few-shot
text generation with natural language instructions. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 390–
402, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021c. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi,
S. M. Ali Eslami, Oriol Vinyals, and Felix Hill. 2021.
Multimodal few-shot learning with frozen language
models. CoRR, abs/2106.13884.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Advances in Neural
Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

5226

http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.coling-main.488
https://doi.org/10.18653/v1/2020.coling-main.488
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://aclanthology.org/2021.emnlp-main.32
https://aclanthology.org/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
http://arxiv.org/abs/2106.13884
http://arxiv.org/abs/2106.13884
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585


9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Xiaozhi Wang, Ziqi Wang, Xu Han, Zhiyuan Liu, Juanzi
Li, Peng Li, Maosong Sun, Jie Zhou, and Xiang Ren.
2019. HMEAE: Hierarchical modular event argu-
ment extraction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 5777–5783, Hong Kong, China. Association
for Computational Linguistics.

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document context.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 289–299, San Diego, California. Association
for Computational Linguistics.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and
Dongsheng Li. 2019. Exploring pre-trained language
models for event extraction and generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5284–
5294, Florence, Italy. Association for Computational
Linguistics.

Tongtao Zhang, Heng Ji, and Avirup Sil. 2019. Joint en-
tity and event extraction with generative adversarial
imitation learning. Data Intell., 1(2):99–120.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017–5033, Online. Association
for Computational Linguistics.

A Argument Template

We use templates for ACE and ERE. Table 8 and
Table 9 show the argument templates for ACE and
ERE, respectively, which is from the RAMS AIDA
ontology and the KAIROS ontology.

B Transfer Learning Details

The top-10 frequent types of events in the src split
of ACE05-E+ are listed as follows:

• Transaction:Transfer-Ownership
• Contact:Phone-Write
• Personnel:Elect
• Personnel:End-Position
• Movement:Transport
• Life:Injure
• Conflict:Attack
• Transaction:Transfer-Money

• Contact:Meet
• Life:Die
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Event Type Template arg1 arg2 arg3 arg4 arg5

Movement:Transport <arg1> transported <arg2> in <arg3> vehicle from
<arg4> place to <arg5> place Agent Artifact Vehicle Origin Destination

Personnel:Elect <arg1> elected <arg2> in <arg3> place Entity Person Place - -
Personnel:Start-Position <arg1> started working at <arg2> organization in <arg3> place Person Entity Place - -
Personnel:Nominate <arg1> nominated <arg2> Agent Person - - -
Personnel:End-Position <arg1> stopped working at <arg2> organization in <arg3> place Person Entity Place - -

Conflict:Attack <arg1> attacked <arg2> hurting <arg5> victims
using <arg3> instrument at <arg4> place Attacker Target Instrument Place Victim

Contact:Meet <arg1> met with <arg2> in <arg3> place Entity Entity Place - -
Life:Marry <arg1> married <arg2> in <arg3> place Person Person Place - -

Transaction:Transfer-Money <arg1> gave money to <arg2> for
the benefit of <arg3> in <arg4> place Giver Recipient Beneficiary Place -

Conflict:Demonstrate <arg1> demonstrated at <arg2> place Entity Place - - -
Business:End-Org <arg1> organization shut down at <arg2> place Org Place - - -
Justice:Sue <arg1> sued <arg2> before <arg3> court or judge in <arg4> place Plaintiff Defendant Adjudicator Place -
Life:Injure <arg1> injured <arg2> with <arg3> instrument in <arg4> place Agent Victim Instrument Place -
Life:Die <arg1> killed <arg2> with <arg3> instrument in <arg4> place Agent Victim Instrument Place -
Justice:Arrest-Jail <arg1> arrested <arg2> in <arg3> place Agent Person Place - -
Contact:Phone-Write <arg1> communicated remotely with <arg2> at <arg3> place Entity Entity Place - -

Transaction:Transfer-Ownership <arg1> gave <arg4> to <arg2> for
the benefit of <arg3> at <arg5> place Seller Buyer Beneficiary Artifact Place

Business:Start-Org <arg1> started <arg2> organization at <arg3> place Agent Org Place - -
Justice:Execute <arg1> executed <arg2> at <arg3> place Agent Person Place - -
Justice:Trial-Hearing <arg1> tried <arg2> before <arg3> court or judge in <arg4> place Prosecutor Defendant Adjudicator Place -
Life:Be-Born <arg1> was born in <arg2> place Person Place - - -

Justice:Charge-Indict <arg1> charged or indicted <arg2> before
<arg3> court or judge in <arg4> place Prosecutor Defendant Adjudicator Place -

Justice:Convict <arg1> court or judge convicted <arg2> in <arg3> place Adjudicator Defendant Place - -
Justice:Sentence <arg1> court or judge sentenced <arg2> in <arg3> place Adjudicator Defendant Place - -
Business:Declare-Bankruptcy <arg1> declared bankruptcy at <arg2> place Org Place - - -
Justice:Release-Parole <arg1> released or paroled <arg2> in <arg3> place Entity Person Place - -
Justice:Fine <arg1> court or judge fined <arg2> at <arg3> place Adjudicator Entity Place - -
Justice:Pardon <arg1> court or judge pardoned <arg2> at <arg3> place Adjudicator Defendant Place - -
Justice:Appeal <arg1> appealed to <arg2> court or judge at <arg3> place Plaintiff Adjudicator Place - -
Justice:Extradite <arg1> extradited <arg2> from <arg3> place to <arg4> place Agent Person Origin Destination -
Life:Divorce <arg1> divorced <arg2> in <arg3> place Person Person Place - -
Business:Merge-Org <arg1> organization merged with <arg2> organization Org Org - - -
Justice:Acquit <arg1> court or judge acquitted <arg2> Adjudicator Defendant - - -

Table 8: All argument templates for ACE05-E and ACE05-E+.

Event Type Template arg1 arg2 arg3 arg4 arg5
Conflict:Attack <arg1> attacked <arg2> using <arg3> instrument at <arg4> place Attacker Target Instrument Place -
Justice:Acquit <arg1> court or judge acquitted <arg2> at <arg3> place Adjudicator Defendant Place - -
Personnel:Elect <arg1> elected <arg2> in <arg3> place Agent Person Place - -
Justice:Release-Parole <arg1> released or paroled <arg2> in <arg3> place Agent Person Place - -
Personnel:Nominate <arg1> nominated <arg2> at <arg3> place Agent Person Place - -
Justice:Appeal <arg1> appealed to <arg2> court or judge sentenced <arg3> Prosecutor Adjudicator Defendant - -

Transaction:Transfer-Ownership <arg1> gave <arg4> to <arg2> for
the benefit of <arg3> at <arg5> place Giver Recipient Beneficiary Thing Place

Business:Declare-Bankruptcy <arg1> declared bankruptcy Org - - - -
Contact:Meet <arg1> met face-to-face with <arg2> in <arg3> place Entity Entity Place - -
Life:Marry <arg1> married <arg2> in <arg3> place Person Person Place - -
Life:Divorce <arg1> divorced <arg2> in <arg3> place Person Person Place - -
Business:Merge-Org <arg1> organization merged with <arg2> organization Org Org - - -
Contact:Correspondence <arg1> communicated remotely with <arg2> at <arg3> place Entity Entity Place - -
Contact:Contact <arg1> communicated with <arg2> at <arg3> place Entity Entity Place - -
Manufacture:Artifact <arg1> manufactured or created or produced <arg2> at <arg3> place Agent Artifact Place - -

Movement:Transport-Person <arg1> transported <arg2> in <arg3> instrument
from <arg4> place to <arg5> place Agent Person Instrument Origin Destination

Movement:Transport-Artifact <arg1> transported <arg2> from <arg3> place to <arg4> place Agent Artifact Origin Destination -

Contact:Broadcast <arg1> communicated to <arg2> at <arg3> place
(one-way communication) Entity Audience Place - -

Transaction:Transaction <arg1> gave something to <arg2> for
the benefit of <arg3> at <arg4> place Giver Recipient Beneficiary Place -

Personnel:Start-Position <arg1> started working at <arg2> organization in <arg3> place Person Entity Place - -
Justice:Pardon <arg1> court or judge pardoned <arg2> at <arg3> place Adjudicator Defendant Place - -
Justice:Fine <arg1> court or judge fined <arg2> at <arg3> place Adjudicator Entity Place - -

Justice:Trial-Hearing <arg1> tried <arg2> before <arg3>
court or judge in <arg4> place Prosecutor Defendant Adjudicator Place -

Business:End-Org <arg1> organization shut down at <arg2> place Org Place - - -

Justice:Sue <arg1> sued <arg2> before <arg3> court or judge
in <arg4> place Plaintiff Defendant Adjudicator Place -

Life:Injure <arg1> injured <arg2> with <arg3> instrument in <arg4> place Agent Victim Instrument Place -
Justice:Arrest-Jail <arg1> arrested <arg2> in <arg3> place Agent Person Place - -
Justice:Execute <arg1> executed <arg2> at <arg3> place Agent Person Place - -
Conflict:Demonstrate <arg1> demonstrated at <arg2> place Entity Place - - -
Justice:Sentence <arg1> court or judge sentenced <arg2> in <arg3> place Adjudicator Defendant Place - -
Life:Die <arg1> killed <arg2> with <arg3> instrument in <arg4> place Agent Victim Instrument Place -
Business:Start-Org <arg1> started <arg2> organization at <arg3> place Agent Org Place - -
Personnel:End-Position <arg1> stopped working at <arg2> organization in <arg3> place Person Entity Place - -
Justice:Extradite <arg1> extradited <arg2> from <arg3> place to <arg4> place Agent Person Origin Destination -

Justice:Charge-Indict <arg1> charged or indicted <arg2> before <arg3>
court or judge in <arg4> place Prosecutor Defendant Adjudicator Place -

Transaction:Transfer-Money <arg1> gave money to <arg2> for
the benefit of <arg3> in <arg4> place Giver Recipient Beneficiary Place -

Justice:Convict <arg1> court or judge convicted <arg2> in <arg3> place Adjudicator Defendant Place - -
Life:Be-Born <arg1> was born in <arg2> place Person Place - - -

Table 9: All argument templates for ERE-EN.
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