@inproceedings{gu-etal-2022-phrase,
title = "Phrase-aware Unsupervised Constituency Parsing",
author = "Gu, Xiaotao and
Shen, Yikang and
Shen, Jiaming and
Shang, Jingbo and
Han, Jiawei",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.444/",
doi = "10.18653/v1/2022.acl-long.444",
pages = "6406--6415",
abstract = "Recent studies have achieved inspiring success in unsupervised grammar induction using masked language modeling (MLM) as the proxy task. Despite their high accuracy in identifying low-level structures, prior arts tend to struggle in capturing high-level structures like clauses, since the MLM task usually only requires information from local context. In this work, we revisit LM-based constituency parsing from a phrase-centered perspective. Inspired by the natural reading process of human, we propose to regularize the parser with phrases extracted by an unsupervised phrase tagger to help the LM model quickly manage low-level structures. For a better understanding of high-level structures, we propose a phrase-guided masking strategy for LM to emphasize more on reconstructing non-phrase words. We show that the initial phrase regularization serves as an effective bootstrap, and phrase-guided masking improves the identification of high-level structures. Experiments on the public benchmark with two different backbone models demonstrate the effectiveness and generality of our method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gu-etal-2022-phrase">
<titleInfo>
<title>Phrase-aware Unsupervised Constituency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaotao</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yikang</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaming</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingbo</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiawei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent studies have achieved inspiring success in unsupervised grammar induction using masked language modeling (MLM) as the proxy task. Despite their high accuracy in identifying low-level structures, prior arts tend to struggle in capturing high-level structures like clauses, since the MLM task usually only requires information from local context. In this work, we revisit LM-based constituency parsing from a phrase-centered perspective. Inspired by the natural reading process of human, we propose to regularize the parser with phrases extracted by an unsupervised phrase tagger to help the LM model quickly manage low-level structures. For a better understanding of high-level structures, we propose a phrase-guided masking strategy for LM to emphasize more on reconstructing non-phrase words. We show that the initial phrase regularization serves as an effective bootstrap, and phrase-guided masking improves the identification of high-level structures. Experiments on the public benchmark with two different backbone models demonstrate the effectiveness and generality of our method.</abstract>
<identifier type="citekey">gu-etal-2022-phrase</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.444</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.444/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>6406</start>
<end>6415</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Phrase-aware Unsupervised Constituency Parsing
%A Gu, Xiaotao
%A Shen, Yikang
%A Shen, Jiaming
%A Shang, Jingbo
%A Han, Jiawei
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F gu-etal-2022-phrase
%X Recent studies have achieved inspiring success in unsupervised grammar induction using masked language modeling (MLM) as the proxy task. Despite their high accuracy in identifying low-level structures, prior arts tend to struggle in capturing high-level structures like clauses, since the MLM task usually only requires information from local context. In this work, we revisit LM-based constituency parsing from a phrase-centered perspective. Inspired by the natural reading process of human, we propose to regularize the parser with phrases extracted by an unsupervised phrase tagger to help the LM model quickly manage low-level structures. For a better understanding of high-level structures, we propose a phrase-guided masking strategy for LM to emphasize more on reconstructing non-phrase words. We show that the initial phrase regularization serves as an effective bootstrap, and phrase-guided masking improves the identification of high-level structures. Experiments on the public benchmark with two different backbone models demonstrate the effectiveness and generality of our method.
%R 10.18653/v1/2022.acl-long.444
%U https://aclanthology.org/2022.acl-long.444/
%U https://doi.org/10.18653/v1/2022.acl-long.444
%P 6406-6415
Markdown (Informal)
[Phrase-aware Unsupervised Constituency Parsing](https://aclanthology.org/2022.acl-long.444/) (Gu et al., ACL 2022)
ACL
- Xiaotao Gu, Yikang Shen, Jiaming Shen, Jingbo Shang, and Jiawei Han. 2022. Phrase-aware Unsupervised Constituency Parsing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6406–6415, Dublin, Ireland. Association for Computational Linguistics.