@inproceedings{chen-etal-2022-leveraging,
title = "Leveraging Task Transferability to Meta-learning for Clinical Section Classification with Limited Data",
author = "Chen, Zhuohao and
Kim, Jangwon and
Bhakta, Ram and
Sir, Mustafa",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.461",
doi = "10.18653/v1/2022.acl-long.461",
pages = "6690--6702",
abstract = "Identifying sections is one of the critical components of understanding medical information from unstructured clinical notes and developing assistive technologies for clinical note-writing tasks. Most state-of-the-art text classification systems require thousands of in-domain text data to achieve high performance. However, collecting in-domain and recent clinical note data with section labels is challenging given the high level of privacy and sensitivity. The present paper proposes an algorithmic way to improve the task transferability of meta-learning-based text classification in order to address the issue of low-resource target data. Specifically, we explore how to make the best use of the source dataset and propose a unique task transferability measure named Normalized Negative Conditional Entropy (NNCE). Leveraging the NNCE, we develop strategies for selecting clinical categories and sections from source task data to boost cross-domain meta-learning accuracy. Experimental results show that our task selection strategies improve section classification accuracy significantly compared to meta-learning algorithms.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2022-leveraging">
<titleInfo>
<title>Leveraging Task Transferability to Meta-learning for Clinical Section Classification with Limited Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhuohao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jangwon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ram</namePart>
<namePart type="family">Bhakta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mustafa</namePart>
<namePart type="family">Sir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Identifying sections is one of the critical components of understanding medical information from unstructured clinical notes and developing assistive technologies for clinical note-writing tasks. Most state-of-the-art text classification systems require thousands of in-domain text data to achieve high performance. However, collecting in-domain and recent clinical note data with section labels is challenging given the high level of privacy and sensitivity. The present paper proposes an algorithmic way to improve the task transferability of meta-learning-based text classification in order to address the issue of low-resource target data. Specifically, we explore how to make the best use of the source dataset and propose a unique task transferability measure named Normalized Negative Conditional Entropy (NNCE). Leveraging the NNCE, we develop strategies for selecting clinical categories and sections from source task data to boost cross-domain meta-learning accuracy. Experimental results show that our task selection strategies improve section classification accuracy significantly compared to meta-learning algorithms.</abstract>
<identifier type="citekey">chen-etal-2022-leveraging</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.461</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.461</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>6690</start>
<end>6702</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Task Transferability to Meta-learning for Clinical Section Classification with Limited Data
%A Chen, Zhuohao
%A Kim, Jangwon
%A Bhakta, Ram
%A Sir, Mustafa
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F chen-etal-2022-leveraging
%X Identifying sections is one of the critical components of understanding medical information from unstructured clinical notes and developing assistive technologies for clinical note-writing tasks. Most state-of-the-art text classification systems require thousands of in-domain text data to achieve high performance. However, collecting in-domain and recent clinical note data with section labels is challenging given the high level of privacy and sensitivity. The present paper proposes an algorithmic way to improve the task transferability of meta-learning-based text classification in order to address the issue of low-resource target data. Specifically, we explore how to make the best use of the source dataset and propose a unique task transferability measure named Normalized Negative Conditional Entropy (NNCE). Leveraging the NNCE, we develop strategies for selecting clinical categories and sections from source task data to boost cross-domain meta-learning accuracy. Experimental results show that our task selection strategies improve section classification accuracy significantly compared to meta-learning algorithms.
%R 10.18653/v1/2022.acl-long.461
%U https://aclanthology.org/2022.acl-long.461
%U https://doi.org/10.18653/v1/2022.acl-long.461
%P 6690-6702
Markdown (Informal)
[Leveraging Task Transferability to Meta-learning for Clinical Section Classification with Limited Data](https://aclanthology.org/2022.acl-long.461) (Chen et al., ACL 2022)
ACL