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Abstract

Identifying sections is one of the critical com-
ponents of understanding medical information
from unstructured clinical notes and devel-
oping assistive technologies for clinical note-
writing tasks. Most state-of-the-art text clas-
sification systems require thousands of in-
domain text data to achieve high performance.
However, collecting in-domain and recent clin-
ical note data with section labels is challenging
given the high level of privacy and sensitivity.
This paper proposes an algorithmic way to im-
prove the task transferability of meta-learning-
based text classification in order to address the
issue of low-resource target data. Specifically,
we explore how to make the best use of the
source dataset and propose a unique task trans-
ferability measure named Normalized Nega-
tive Conditional Entropy (NNCE). Leveraging
the NNCE, we develop strategies for selecting
clinical categories and sections from source
task data to boost cross-domain meta-learning
accuracy. Experimental results show that our
task selection strategies improve section clas-
sification accuracy significantly compared to
meta-learning algorithms.

1 Introduction

An important part of Electronic Health Records
(EHRs) is the digitized clinical notes that contain
the medical and treatment histories of patients. The
section of clinical notes can be defined as a text seg-
ment that clusters consecutive sentences with rele-
vant content of one dimension of a patient’s health
encounter (Pomares-Quimbaya et al., 2019). Clin-
ical note sections, labeled with either headings or
subheadings, make the notes well organized and of-
fer improved clinical information extraction (Wang
et al., 2018b). However, many clinical notes con-
tain narratives that are in an unstructured free-text
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format, (e.g., History of Present Illnesses described
in paragraph form), which makes it challenging to
retrieve and utilize this information. In the United
States, physicians generally spend an excessive
amount of time interfacing with EHRs and com-
puterized physician order entry (CPOE) workflows
in their aftercare work, resulting in burnout, low
job satisfaction, and system-wise inefficiencies (Pa-
tel et al., 2018). An automated section classifier
can play a key role in mitigating this problem. In
some cases, section classification serves as an end
task of automatic report segmentation. For exam-
ple, according to an internal survey we conducted
with Amazon Care providers, we found evidence
that classifying sentences related to the History of
Present Illness from medical encounters can greatly
assist providers with their documentation. For
computer-assisted report generation, understand-
ing clinical notes from an unstructured format is
an important data pre-processing (Gopinath et al.,
2020).

There are some challenges for clinical note sec-
tion classification in practice. First, it is difficult
to collect and access a large amount of in-domain
data. Second, section types and medical contents
within a section substantially vary depending on
care providers, which makes it hard to utilize open-
source datasets. Even though some sections exist
in multiple different sources, their contents vary
across clinical categories. For example, the Diag-
nosis section for Nutrition specialty and Rehabili-
tation Service specialty vary in types of content.

Recently developed neural network language
technologies capture rich contextual information
in sentences. Among them, Bidirectional En-
coder Representations from Transformers (BERT)
achieved significant improvements in multiple Nat-
ural Language Processing (NLP) tasks, establish-
ing strong baselines in low-resource scenarios (De-
vlin et al., 2019). However, there remains room
for performance improvement because BERT uses
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source data – data outside of in-domain or target-
domain data – in an unsupervised training fash-
ion only. Another approach for low-resource in-
domain NLP tasks is Multi-Task Learning (MTL).
The MTL adopts shared text encoding layers across
all tasks while the top layers are task-specific for
each dataset (Liu et al., 2015, 2019). The target
task with limited data benefits from the knowledge
learned from source tasks. Instead of MTL, which
minimizes the loss of the source tasks, Dou et al.
(2019) proposed a model-agnostic meta-learning
algorithm that finds optimal model parameters for
better adaptation capability to new tasks. In classi-
fication tasks, Nichol et al. (2018) proposed Rep-
tile, an optimization-based meta-learning algorithm
for section classification, and achieved comparable
accuracy on well-established benchmarks on low
resourced image datasets. In the present paper, we
adopted these methods as strong baselines in our ex-
periments and computed the relative performance
improvement of our method.

Task transferability denotes how easy it is to
transfer the representation learned from one task
to another task (Tran et al., 2019; Nguyen et al.,
2020b). It helps discover the relationship between
two types of tasks and provides supporting evi-
dence for developing transfer learning strategies.
Task transferability becomes more useful in real-
istic situations where the assumption of the meta-
learning, which is that data of the target task can
be drawn from the distribution of the source tasks,
does not hold. One common example is that there
are ‘outlier tasks’ in the training (source) tasks,
which are dissimilar from the testing (target) ones
(Venkitaraman et al., 2020). For this problem, good
selection of relevant source tasks can benefit knowl-
edge transfer to unseen tasks (Zamir et al., 2018;
Achille et al., 2019; Nguyen et al., 2020a).

In clinical section classification, we suppose how
close a source task is toward the target task is de-
termined by its specialty and the section types in-
cluded. However, few studies of task transferabil-
ity estimation have discussed the function of each
label. Thus we propose an information-theoretic
metric for task transferability, namely Normalized
Negative Conditional Entropy (NNCE). The NNCE
score is calculated by the classifier of a source task
and target data samples without training on the tar-
get task, thus saving expensive computation for
model optimization. We hypothesize that this score
correlates with how well the source data labels (sec-

tions) distinguish the target labels.
Leveraging the NNCE, we explore strategies of

source task selection to improve the performance
of meta-learning. The goal is to make the best use
of available data from various clinical specialties
for any target tasks. Specifically, we explore two
strategies: 1) category selection - we select a sub-
set of clinical categories that are relevant to the
target task; 2) section selection - for a clinical cat-
egory, we filter out the samples of certain section
types which are not relevant to the target task and
merge similar sections by assigning the same label.
The category selection is informed directly by the
best NNCE scores. For section selection, however,
there are too many combinations, and it is time-
consuming to train models for every possible task
and find optimal ones. To handle that, we apply
a backward selection method for heuristic search.
The experiment results show that our task selec-
tion strategies improve the meta-transfer learning
of section classification in low-resource scenarios.

Our work has the following contributions:

• We apply the meta-learning for clinical sec-
tion classification at sentence level in low-
resource scenarios utilizing out-of-domain
datasets.

• We propose a task transferability metric for
selecting the source tasks relevant to the target
tasks by category and section selection, which
improves meta-learning performance.

• We evaluate a computationally efficient back-
ward selection method for section selection
and show that it leads to a better knowledge
transfer. To the best of our knowledge, this is
the first attempt to apply class subset selection
to improve the task transferability in the NLP
field.

2 Related Work

In this section, we briefly discuss several areas in
machine learning that are related to our work.

2.1 Clinical Section Classification
The goal of this paper is to address the automated
clinical section classification task in low-resource
scenarios. Notable early work focused on the ex-
traction of frequency-based features and classified
the sections of the clinical narratives with tradi-
tional machine learning approaches, including Sup-
port Vector Machines (Apostolova et al., 2009),

6691



Maximum Entropy (MaxEnt) models (Tepper et al.,
2012) and Bayesian models (Ganesan and Subotin,
2014). Li et al. (2010) framed section mapping as
a sequence-labeling problem and adopted a Hidden
Markov Model (HMM). Dai et al. (2015) formu-
lated the task as a token-based classification using
the conditional random fields (CRF) model. Ni
et al. (2015) applied active learning and distant su-
pervision to the section classification. In the study
of Tran et al. (2015), the tasks were performed by
an object-based section annotator using an ontol-
ogy to describes the relationship among the section
concepts. However, most of the studies above in-
vestigate the section classification task for a single
domain without exploring how to transfer knowl-
edge from the source dataset to an unseen target
domain with limited data.

Recently, Rosenthal et al. (2019) leveraged the
data from medical literature and performed sec-
tion classification at the sentence level via transfer
learning, recurrent neural networks (RNNs), and
BERT in scenarios where a limited amount of in-
domain training data was available. This work per-
forms simple transfer learning and only predicts the
shared sections across different clinical categories,
and in practice, most section labels are domain-
specific. This paper applies meta-learning and task
transferability to transfer information learned from
the source category to the target category with a
new section classification task.

2.2 Meta-learning
Meta-learning aims at fast adaptation to new tasks
with small amounts of data through learning knowl-
edge from multiple source tasks. Among differ-
ent approaches to meta-learning, one proposal is
learning the initialization of a network that is good
at adapting to new jobs. Dou et al. (2019) ap-
plied this proposal to the General Language Under-
standing Evaluation (GLUE) benchmark (Wang
et al., 2018a) and explored the model-agnostic
meta-learning (MAML) (Finn et al., 2017) and its
variants called first-order MAML (FO-MAML) and
Reptile. In this paper, we adopted the Reptile algo-
rithm that achieved the best performance in (Dou
et al., 2019).

2.3 Task Transferability
Previous work explores the relationship between
classification tasks on task similarity using tra-
ditional machine learning algorithms (Thrun and
O’Sullivan, 1996; Bakker and Heskes, 2003; Xue

et al., 2007; Zhang and Yeung, 2010). Other re-
cent work mapped the functions into a vector space
(Achille et al., 2019, 2021) to estimate the transfer-
ability using a non-symmetric distance. Vu et al.
(2020) further developed the task embeddings ap-
proach and applied it to the NLP field to predict
the most transferable source tasks. Zamir et al.
(2018) modeled the underlying structure among
different tasks to reduce the number of labeled
training data. However, the common theme in all
these approaches is that they require fine-tuning the
target task and exhaustive optimization of parame-
ters. The transferability estimation, unfortunately,
is not robust if there are insufficient training sam-
ples. Moreover, none of these algorithms have
discussed label selection which is crucial for task
selection in clinical section classification. Tran
et al. (2019) investigated the correlation of the la-
bel distributions between those tasks and proposed
a negative conditional entropy (NCE) measure to
estimate the task transferability. This algorithm
only requires the source model and the labeled tar-
get samples without fine-tuning the in-domain data.
Nguyen et al. (2020b) developed a variant of NCE
measure called the Log Expected Empirical Predic-
tion (LEEP) that denotes the average log-likelihood
of the expected empirical predictor. Our proposed
NNCE is similar in concept to NCE and LEEP.
However, we apply the class subset selection to
improve the knowledge transfer. Unlike previous
work (Manjunatha et al., 2018), which does not use
knowledge about the target task while finding the
subset, our approach incorporates how the decision
boundary of each source label distinguishes the
labels of the target task.

3 Dataset

We conduct experiments on the Medical Infor-
mation Mart for Intensive Care III (MIMIC-III)
database (Johnson et al., 2016), a large open-access
dataset of de-identified patient records. We col-
lected data from 9 different clinical categories of
MIMIC-III and randomly picked 200 clinical notes
for each. There are nearly 1,000 section labels of
these categories, and most of them contain very few
sentence instances. To handle the sparsity, we only
keep the section types of each category satisfying
the following conditions:

• The section is among the ten most frequent
ones.

6692



Category
Nb. of

Instance
Section labels

Discharge Summary
Addendum

2.2K
addendum,discharge medications, service, dictated by, hospital course, medications on

discharge, discharge diagnosis, discharge instructions, tablet sig, history of present illness
Discharge Summary

Reports
8.8K

history of present illness, past medical history, hospital course, discharge instructions, tablet sig,
impression, discharge medications, social history,allergies, medications on admission

Echo 6.0K
conclusions,mitral valve, left ventricle, aortic valve, tricuspid valve, general comments,aorta,

right ventricle, right atrium/interatrial septum, impression

Nutrition 2.4K
Specifics,labs, current diet order / nutrition support, gi,pertinent medications, ptat risk due to,

tube feeding / tpn recommendations, comments, diagnosis, protein
Nursing Generic 5.4K plan, assessment, action, response, vs, chief complaint:
Nursing Progress 2.8K plan, assessment, action, response

Recab Service
Evaluation

4.3K
clinical impression/prognosis, time frame, diagnosis,history of present illness /

subjective complaint,arousal/attention/cognition/communication, pulmonary status,
education /communication, prior functional status/activity level, frequency/duration,posture:

Recab Service
Progress

2.5K
assessment,balance, updated medical status, education / communication, gait, plan,anticipated

discharge, aerobic activity response, rolling, follow up ptvisit to address goals of

Social Work 3.0K
patient/ family assessment, continuing issues to be addressed, employment status,

previous living situation, previous level of functioning, assessment, past addictions history,
plan / follow up, past psychiatric history, healthcare proxy appointed

Table 1: Sentence and section lists in each MIMIC-III category.

• The number of sentences with this section
label is more than 2% of the total instances.

Table 1 shows the number of sentence instances
and the lists of selected section types. The section
list varies across categories, with only a few section
labels in more than one domain. However, some
sections in different categories are still related to
each other. For example, sentences in the social
history section of ‘Discharge Summary Reports’
category are similar to the instances in the employ-
ment status and previous living situation section of
‘Social Work’.

4 Methods

4.1 Meta-learning Approach

We adopt Reptile, an optimization-based meta-
learning algorithm, to be our baseline approach. As-
sume we have a set of source tasks {T1, T2,...,TN}
from multiple open-resource clinical datasets. We
perform the Reptile with these source tasks to learn
the BERT model parameters φ to provide a good
initialization for fine-tuning the target task. For
sampling batches of tasks, we use the same strategy
proposed in Dou et al. (2019) that the probability
of selecting a task is proportional to the size of its
dataset. The training procedure of Reptile is de-
scribed in Algorithm 1 where β denotes learning
rate. In the baseline meta-learning approach, we
train the model with all the available datasets with-
out data selection which might suffer from ‘outlier’
tasks. In the next step, we leverage the task trans-

ferability estimation for selecting the sources tasks
bettering transferring knowledge to the target task.

4.2 Normalized Negative Conditional
Entropy

Fig. 1 shows the general framework of NNCE. The
motivation of the NNCE for estimating the task
transferability is the idea of evaluating how well
the decision boundaries of source labels distinguish
the target labels.

Algorithm 1 Reptile Approach

Initialize model parameters φ with the pre-
trained BERT
for iteration in 1,2,... do

Sample batch of tasks {Ti} proportional to
the size of its dataset

for all Ti do
Compute φki : k steps of gradient descent
Update φ = φ+ β 1

|Ti|
∑

Ti
(φki − φ)

Consider a source task defined on X × Y and
a target task on X × Z . We denote the target
samples as D = {(x1, z1), (x1, z2), ..., (xn, zn)}
and use y ∈ Y = {1, 2, ..., LS} and z ∈ Z =
{1, 2, ..., LT } to represent the label variables of
source and target data respectively. We train a clas-
sifier f on the source task which maps the space X
to Y . By feeding the target samples into the source
model f , we assign the predicted source labels
for the target samples so that Ŷ = {ŷ1, ŷ2, ..., ŷn}.
Thus, every target sample is attached with a ‘true
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Figure 1: NNCE measure.

label’ from Z and a predicted label from Y that
can be denoted as (xi, ŷi, zi).

We compute the empirical joint distribution and
the empirical marginal distribution by

P̂ (y) =
1

n

n∑
i=1

1{ŷi = y},

P̂ (z) =
1

n

n∑
i=1

1{zi = z},

P̂ (y, z) =
1

n

n∑
i=1

1{ŷi = y, zi = z}.

(1)

To measure how the source and task labels are
related, we handle the class imbalance issue of
the target dataset by normalizing the target class
frequency:

P̃ (y, z) = P̂ (y|z) = P̂ (y, z)

P̂ (z)
. (2)

The value of P̃ (y, z) represents the ratio of the
target samples in class z that are assigned with the
predicted label y. Then we compute:

P̃ (z|y) = P̃ (y, z)∑LT
z P̃ (y, z)

. (3)

so that
∑

z P̃ (z|y) = 1. We suppose that a good
source label y = l that distinguishes the target
labels well should have large values of P̃ (z =
l|y) for some target classes as well as small values
for other target classes. On the contrary, if the
values of P̃ (z = l|y) for different target class z
are approximately equal, this label is useless for
classifying the target labels. Based on that, we
define the NNCE to estimate the task transferability
by:

Figure 2: Category selection example.

NNCE =

LS∑
y∈Y

P̂ (y)

LT∑
z∈Z

P̃ (z|y)logP̃ (z|y)

=

LS∑
y∈Y

P̂ (y)E(y)

(4)

where we use E(y) =
∑LT

z∈Z P̃ (z|y)logP̃ (z|y)
to estimate how well the decision boundary of a
source label classifies the target classes and NNCE
is the overall measurement weighted by the prior
P̂ (y). NNCE score is always negative. For a de-
termined target task, a larger score indicates better
transferability between the source and target tasks.
The advantage of NNCE over some other label cor-
relation methods like LEEP is that it allows us to
select the source labels better distinguishing the
target class with respect toE(y). The NNCE is re-
lated to the NCE proposed by Tran et al. (2019),
and it is equal to NCE if we do not normalize the
target class frequency in Equation (2). The proof is
in the Appendix A.

4.3 Task Selection for Clinical Section
Classification

We suppose that selecting the source tasks with
good task transferability can benefit the meta-
learning of the low-resource target task. In clinical
section classification tasks, the pattern of the data
and the section types vary across categories. So we
propose two approaches for choosing the source
tasks - category selection and section selection.

4.3.1 Category Selection
The procedure of category selection is direct. Fig. 2
shows a simple example of category selection. We
compute the NNCE score for each of the source
tasks from different clinical categories. Then we
pick the N ‘best’ categories whose task achieves
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Figure 3: A single step for section selection.

the highest NNCE scores. This approach helps
filter out the ‘outlier’ tasks by removing the clinical
categories irrelevant to the target task.

4.3.2 Section Selection
Section selection is a process of searching for the
optimal task for each of the clinical categories. It
aims to make the best use of the section labels
to benefit transferring knowledge to the target task.
We modify the list of the section classes by deleting
the instances from the useless sections and merge
similar ones. However, there are too many combi-
nations for partitioning that lead to high computa-
tional costs. To reduce the computational complex-
ity, we propose a backward selection method with
three operations for heuristic search.

We perform a section selection procedure with
NNCE measure and the following three operations
that delete or merge sections to generate new tasks:

Deleting the Minor
We delete the section l∗ of the source dataset with
the smallest value of empirical marginal distribu-
tion P̂ (y):

l∗ = argmin
l

P̂ (y = l) (5)

The motivation behind this operation is that the
fewest target samples are tagged with source label
l∗ representing this section is unrelated to the target
category.

Deleting the Worst
We delete the section l∗ satisfying:

l∗ = argmin
l

E(y = l) (6)

From the demonstration in Section 4.2 we can
conclude l∗ has the smallest value of E(y), which
indicates the source section l∗ is worst at distin-
guishing the target sections.

Merging the Closest
This operation aims to find the ‘closest’ pair of
the source sections and merge them into one. To
find such sections i∗, j∗, we adopt the following
equation:

i∗, j∗ = argmin
i,j i6=j

JSD(P̃ (z|y = i) ‖ P̃ (z|y = j))

(7)

where JSD(·) presents the Jensen–Shannon di-
vergence (Lin, 1991). A small value of JSD(·)
indicates that the P̃ (z|y = i∗) and P̃ (z|y = j∗)
distribute closely and the source sections i∗ and j∗

are similar. In this case, the decision boundary be-
tween the source label i∗ and j∗ are trivially helpful
for discriminating the target labels.

Backward Selection
We initialize the source task by including all the
samples and sections labels, and perform a back-
ward selection algorithm to reduce the section num-
bers iteratively. Fig. 3 shows a single step of this
process. We apply the NNCE measure with three
operations introduced before to generate NNCE
scores and produce no more than three new tasks 1.
Then we compute the NNCE score for each of the
new tasks. The final picked task at this step is the
one that achieves the highest scores among the orig-
inal one and the newly generated ones. We keep

1Different operations may result in the same task.
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Target
category

Sample
size

By
chance

BERT MTL Reptile

Discharge
Summary

Report

200 0.216 0.542 0.552 0.558(p<0.01)∗
500 0.216 0.632 0.640 0645(p=0.06)
1000 0.216 0.673 0.678 0.680(p=0.16)

Nursing
Progress

200 0.332 0.645 0.649 0.650(p=0.22)
500 0.332 0.742 0.745 0.747(p=0.23)
1000 0.332 0.785 0.787 0.788(p=0.36)

Rehab
Service
Progress

200 0.254 0.848 0.855 0.857(p=0.04)
500 0.254 0.923 0.926 0.927(p=0.10)
1000 0.254 0.948 0.950 0.950(p=0.19)

Social
Work

200 0.580 0.818 0.828 0.834(p<0.01)
500 0.580 0.896 0.904 0.907(p=0.01)
1000 0.580 0.934 0.936 0.938(p=0.04)

∗Comparing with BERT

Table 2: The Classification accuracy results of baseline
approaches.

performing this process until none of the produced
tasks improves the NNCE score anymore.

5 Experiment Results and Discussion

We carry out the experiments with four target tasks
of different clinical categories ‘Discharge Sum-
mary Report’, ‘Nursing Progress’, ‘Recab Service
Progress’ and ‘Social Work’ presented in Table 1.
For the target task of ‘Social Work’, we utilize all
the other eight categories for pre-training. For ‘Dis-
charge Summary Report’, ‘Nursing Progress’ and
‘Recab Service Progress’, we remove their close cat-
egories - ‘Discharge Summary Addendum’, ‘Nurs-
ing Generic’ and ‘Recab Service Evaluation’ cat-
egories, respectively, and the pre-training is per-
formed by the remaining seven categories.

For each target categories, we split the samples
into the training and testing set with a roughly
3:1 ratio across the ‘SUBJECT_ID’ referring to
a unique patient. We randomly pick 200/500/1000
samples from each target datasets to simulate low-
resource scenarios and perform BERT, MTL, and
Reptile for the clinical section classification.

5.1 Implementation Details

We adopt the PyTorch (version 1.3.0) implemen-
tation of BERT2 for our tasks and the model is
initialized with BERT-base. The settings of MTL
and Reptile are same as the ones described in (Dou
et al., 2019). We threshold the word sequence
length to 80, which covers more than 99% of the
sentences. We use Adam (Kingman and Ba, 2015)
for optimization and a batch size of 32 for all the

2https://github.com/huggingface/pytorch-pretrained-
BERT

Figure 4: Convergence of accuracy of fine-tuning for
sample size=200.

experiments. For both MTL and Reptile, the learn-
ing rate is 5e-5, and the number of pre-training
epoch is 5. We set the inner update step k to be 5,
the inner learning rate to be 5e-5 and the number
of sampled tasks in each step to be 8 for Reptile.
For BERT fine-tuning, we train the model with the
learning rate of 2e-5 for 25 epochs.

5.2 Results of Baseline Approaches

The classification accuracy results of BERT, MTL,
and Meta-learning for different tasks are shown
in Table 2. From the table, we find that both
MTL and Reptile improve the performance of the
low-resource target task while Reptile outperforms
multi-task learning and achieves the best results.
The comparison between BERT and Reptile demon-
strates that the meta-learning approach can benefit
the fine-tuning of the target task. The improvement
is more significant when we perform the classifica-
tion task with fewer target samples.

Fig. 4 shows the convergence of accuracy of
BERT fine-tuning with and without Reptile pre-
training. The curves in these figures suggest that
meta-learning has the advantage of fast conver-
gence and adapts to the new task more quickly. We
also discover that after 15 epochs of fine-tuning, the
performance is not sensitive to the epoch number.

5.3 Evaluation of NNCE

For any selected target category, we pre-train the
model for each of the remaining categories and fine-
tune with 200 target samples to obtain the transfer
learning accuracies. We compute the NNCE scores
for different source tasks and evaluate the NNCE by
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Target category
Correlation coefficients
NCE NNCE

Discharge Summary
Report

0.671 0.676

Nursing Progress 0.772 0.807∗

Rehab Service
Progress

0.918 0.922

Social Work 0.479 0.703∗

∗The correlations between the NNCE scores and transfer learn-
ing accuracy are statistically significant with p < 0.05.

Table 3: Comparison of Pearson correlation coeffi-
cients of NCE and NNCE(Tran et al., 2019).

the Pearson correlation coefficients between these
scores and their accuracies of adaptation. We also
report the correlations using the NCE scores for
comparison. By comparing the correlation coef-
ficients presented in Table 3, we find that NNCE
receives higher correlations over NCE for all the
tasks and is better at task transferability estimation.

5.4 Results of Task Selection

We set the target sample size to be 200 and explore
how task selection strategies - category selection
and section selection benefit meta-learning.

Table 4 shows the results of meta-learning ap-
proach with category selection. We report the clas-
sification accuracies of picking N = 2/4/6 categories
with the highest NNCE scores and compare with
including all the source categories. The results re-
veal that the category selection improves the meta-
learning performance, and there is an optimal value
of N for each task. If N is too large, it might in-
clude ‘outlier’ tasks that degrade the performance.
If N is too small, it loses the benefit of utilizing
large amounts of source data. We also perform the
category selection with NCE to compare it with
NNCE. The underlined tasks in Table 4 indicate
that different subsets of categories are selected if
we replace NNCE with NCE. For all these tasks,
NNCE achieves higher accuracies. Please see Ap-
pendix C for detailed results for different target
categories.

We discuss whether the section selection benefits
the meta-learning in two scenarios. First, we com-
pare the performances of Reptile with and without
section selection using all the source categories. In
the second scenario, we repeat the first procedure
but only use the best subset of the source categories
determined in Table 4, and repeat the comparison
method in the first scenario. The comparisons pre-
sented in Table 5 indicate that adopting section se-

Task
Nb. selected categories

2 4 6 All∗∗

Discharge Summary
Report

0.556 0.569∗ 0.559 0.558+

Nursing Progress 0.660 0.666∗ 0.645 0.650+

Rehab Service
Progress

0.859 0.862 0.861 0.857

Social Work 0.835 0.838 0.843 0.834

∗ is significantly higher than + at p < 0.05.

Table 4: The classification accuracy of Reptile with cat-
egory selection. The categories are selected with the
highest NNCE scores. ∗∗‘All’ denotes all the original
source tasks are included

Task Reptile Reptile + SS
Reptile +

BCS
Reptile +
BCS + SS

Discharge
Summary

Report
0.558 0.562 0.569+ 0.579∗

Nursing
Progress

0.650 0.655 0.666 0.665

Rehab Service
Progress

0.857+ 0.866∗ 0.862 0.867

Social Work 0.834 0.840 0.843 0.846

∗ is significantly higher than + at p < 0.05.

Table 5: The classification accuracy of Reptile with and
without section selection. SS: section selection, BCS:
Best category subset

lection can improve the classification performance
of Reptile in both scenarios. However, the improve-
ment is not statistically significant for most tasks.
The average relative gains to Reptile brought by the
category selection and section selection are 1.5%
and 0.8%, which indicates that category selection
contributes more to improving the meta-learning.
We also find that combining both category and sec-
tion selection results in better performance than
using each of them independently for most tasks.

We show an example in Table 6 to further il-
lustrate section selection. The source and target
categories are ‘Rehab Service Progress’ and ‘Nurs-
ing Progress’, and the original section types are
presented. The labels in blue are the selected sec-
tions, and the merged ones are displayed inside
the brackets. We observe that the common section
types - plan and assessment are kept. Although the
content of the same section type is different across
categories, there are similarities between their ut-
terance patterns. The source sections in black are
irrelevant to any of the target sections, so they are
removed. The merged sections balance and gait
are of close concepts, both of which describe the
patient’s progress of mobility. This example shows
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that the selection procedure extracts information
of the source sections related to the target sections,
which benefits the knowledge transfer.

Target Category:
Nursing Progress

Source Category:
Rehab Service Progress

Section
Labels

plan,
assessment,

action,
response

plan, assessment,
{balance, gait},

updated medical status,
education / communication,

aerobic activity response,
anticipated discharge

rolling, follow up pt visit
to address goals of

Table 6: An Example of Section Selection

6 Conclusion and Future Work

In this paper, we explored the clinical section clas-
sification with limited in-domain data. We applied
a meta-learning algorithm utilizing multiple out-of-
domain clinical datasets, improving the classifica-
tion accuracy and adaptation speed. We proposed a
Normalized Negative Conditional Entropy measure
to estimate the task transferability and leverage it to
select the clinical categories and sections related to
the target task that best improves knowledge trans-
fer. In addition, we examined a backward selection
method to reduce the computational complexity of
section selection. Our study suggests that both cate-
gory selection and section selection outperform the
baseline meta-learning approach, and combining
two strategies results in better performance than
adopting each of them independently.

Future work will look to develop a joint optimiza-
tion of category selection and section selection. We
also plan to apply our approach to other styles of
text data. For example, section classification on
spoken utterances of doctor-patient conversations
is an exciting extension of the present work, which
we plan to explore (Krishna et al., 2021). Finally,
we will continue to apply the proposed method to
other text processing applications, e.g., medical
information retrieval (Goeuriot et al., 2016).
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Appendix

A The Relationship between NNCE and
NCE

Proposition: NNCE is equal to NCE if we do not
normalize the target class frequency in Equation
(2).

Without normalizing the target class frequency,
we modify the empirical distributions in Equation
(2) and Equation (3) by

P̃ (y, z) = P̂ (y, z),

P̃ (y|z) = P̂ (y|z).
(8)

Based on Equation (8) and the definition of
NNCE in Equation (4) , we can achieve the new
formula of NNCE:

NNCE =

LS∑
y∈Y

P̂ (y)

LT∑
z∈Z

P̃ (z|y)logP̃ (z|y)

=

LS∑
y∈Y

P̂ (y)

LT∑
z∈Z

P̂ (z|y)logP̂ (z|y)

=

LS∑
y∈Y

LT∑
z∈Z

P̂ (y)P̂ (z|y)logP̂ (z|y)

=

LT∑
z∈Z

LS∑
y∈Y

P̂ (y, z)log
P̂ (y, z)

P̂ (y)
.

(9)

which is equal to the definition of NCE in (Tran
et al., 2019).

B Data Preprocessing

We considered a new line starting with ‘∧[A-Z][a-
zA-Z ]+:’ as the first line of a new label. Then,
‘∧[A-Z][a-zA-Z ]+:’ in the line became the new
label, while text after ‘:’ until another new label
became the text data of the label. Then, we split the
text data into sentence-level data by two sequential
processes: (Step 1) Splitting it if starting with up-
percase at the beginning of the newline or if it is an
empty line, and then (Step 2) Splitting it further by
SciSpacy sentencizer with en_core_sci_sm model
(Neumann et al., 2019). The multi-label sentences
(1.4% of 38326 instances) are filtered out.

For each collected sentences, we remove the
punctuation marks and special characters like ==,
–,*. We replace the de-identified brackets and time

phrases like hh:mm:ss with the symbols "[phi]" and
"[num]" that are added into the BERT vocabulary.

C Category Selection Details

Tables 7, 8, 9, and 10 show the category selection
details for different target categories. We compare
the NCE and NNCE by their selected categories
and the classification accuracy of Reptile. For all
these tasks, we observe that NNCE achieves higher
accuracies. However, the difference between the
NCE and NNCE is not very evident, presumably
because the number of the total source categories
is small, making their subset of the selected cate-
gories similar. A more standard way to compare
these two metrics is the correlation coefficients
between the NNCE scores and transfer learning
accuracy, shown in Table 3 in the main body.
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Nb. Selected
Categories

Selected Categories Accuracy
NCE NNCE NCE NNCE

2 Social Work, Nutrition - 0.556 -

4
Social Work, Nutrition,

Nursing Generic,
Rehab Service Progress

- 0.569 -

6

Social Work, Nutrition,
Nursing Generic,

Rehab Service Progress,
Echo, Rehab Evaluation

Social Work, Nutrition,
Nursing Generic,

Rehab Service Progress,
Echo, Nursing Progress

0.556 0.559

Table 7: The category selection details for the task category Discharge Summary Report. - denotes that the NCE
and NNCE select the same subset of the categories

Nb. Selected
Categories

Selected Categories Accuracy
NCE NNCE NCE NNCE

2
Discharge Summary Report,

Rehab Service Evaluation
Discharge Summary Report,

Rehab Service Progress
0.653 0.660

4

Discharge Summary Report,
Rehab Service Progress,

Rehab Service Evaluation,
Echo

Discharge Summary Report,
Rehab Service Progress,

Rehab Service Evaluation,
Nutrition

0.654 0.666

6

Discharge Summary Report,
Rehab Service Progress,

Rehab Service Evaluation,
Nutrition, Social Work,

Echo

- 0.645 -

Table 8: The category selection details for the task category Nursing Progress. - denotes that the NCE and NNCE
select the same subset of the categories

Nb. Selected
Categories

Selected Categories Accuracy
NCE NNCE NCE NNCE

2 Echo, Nursing Progress - 0.859 -

4
Echo, Nursing Progress

Nursing Generic, Social Work
- 0.862 -

6

Echo, Nursing Progress
Nursing Generic, Social Work,

Discharge Summary Addendum,
Nutrition

- 0.556 -

Table 9: The category selection details for the task category Rehab Service Progress. - denotes that the NCE and
NNCE select the same subset of the categories

Nb. Selected
Categories

Selected Categories Accuracy
NCE NNCE NCE NNCE

2
Rehab Service Progress,

Rehab Service Evaluation
Rehab Service Progress,

Discharge Summary Report
0.829 834

4

Rehab Service Progress,
Rehab Service Evaluation,

Discharge Summary Report,
Nursing Generic

Rehab Service Progress,
Rehab Service Evaluation,

Discharge Summary Report,
Discharge Summary Addendum

0.834 838

6

Rehab Service Progress,
Rehab Service Evaluation,

Discharge Summary Report,
Discharge Summary Addendum,

Nutrition, Echo

Rehab Service Progress,
Rehab Service Evaluation,

Discharge Summary Report,
Discharge Summary Addendum,

Nursing Generic, Nursing Progress

0.831 843

Table 10: The category selection details for the task category Social Work.
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