@inproceedings{kotnis-etal-2022-milie,
title = "{MILIE}: Modular {\&} Iterative Multilingual Open Information Extraction",
author = "Kotnis, Bhushan and
Gashteovski, Kiril and
Rubio, Daniel and
Shaker, Ammar and
Rodriguez-Tembras, Vanesa and
Takamoto, Makoto and
Niepert, Mathias and
Lawrence, Carolin",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.478",
doi = "10.18653/v1/2022.acl-long.478",
pages = "6939--6950",
abstract = "Open Information Extraction (OpenIE) is the task of extracting (subject, predicate, object) triples from natural language sentences. Current OpenIE systems extract all triple slots independently. In contrast, we explore the hypothesis that it may be beneficial to extract triple slots iteratively: first extract easy slots, followed by the difficult ones by conditioning on the easy slots, and therefore achieve a better overall extraction. Based on this hypothesis, we propose a neural OpenIE system, MILIE, that operates in an iterative fashion. Due to the iterative nature, the system is also modularit is possible to seamlessly integrate rule based extraction systems with a neural end-to-end system, thereby allowing rule based systems to supply extraction slots which MILIE can leverage for extracting the remaining slots. We confirm our hypothesis empirically: MILIE outperforms SOTA systems on multiple languages ranging from Chinese to Arabic. Additionally, we are the first to provide an OpenIE test dataset for Arabic and Galician.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kotnis-etal-2022-milie">
<titleInfo>
<title>MILIE: Modular & Iterative Multilingual Open Information Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bhushan</namePart>
<namePart type="family">Kotnis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kiril</namePart>
<namePart type="family">Gashteovski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Rubio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ammar</namePart>
<namePart type="family">Shaker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vanesa</namePart>
<namePart type="family">Rodriguez-Tembras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Takamoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Niepert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolin</namePart>
<namePart type="family">Lawrence</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Open Information Extraction (OpenIE) is the task of extracting (subject, predicate, object) triples from natural language sentences. Current OpenIE systems extract all triple slots independently. In contrast, we explore the hypothesis that it may be beneficial to extract triple slots iteratively: first extract easy slots, followed by the difficult ones by conditioning on the easy slots, and therefore achieve a better overall extraction. Based on this hypothesis, we propose a neural OpenIE system, MILIE, that operates in an iterative fashion. Due to the iterative nature, the system is also modularit is possible to seamlessly integrate rule based extraction systems with a neural end-to-end system, thereby allowing rule based systems to supply extraction slots which MILIE can leverage for extracting the remaining slots. We confirm our hypothesis empirically: MILIE outperforms SOTA systems on multiple languages ranging from Chinese to Arabic. Additionally, we are the first to provide an OpenIE test dataset for Arabic and Galician.</abstract>
<identifier type="citekey">kotnis-etal-2022-milie</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.478</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.478</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>6939</start>
<end>6950</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MILIE: Modular & Iterative Multilingual Open Information Extraction
%A Kotnis, Bhushan
%A Gashteovski, Kiril
%A Rubio, Daniel
%A Shaker, Ammar
%A Rodriguez-Tembras, Vanesa
%A Takamoto, Makoto
%A Niepert, Mathias
%A Lawrence, Carolin
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F kotnis-etal-2022-milie
%X Open Information Extraction (OpenIE) is the task of extracting (subject, predicate, object) triples from natural language sentences. Current OpenIE systems extract all triple slots independently. In contrast, we explore the hypothesis that it may be beneficial to extract triple slots iteratively: first extract easy slots, followed by the difficult ones by conditioning on the easy slots, and therefore achieve a better overall extraction. Based on this hypothesis, we propose a neural OpenIE system, MILIE, that operates in an iterative fashion. Due to the iterative nature, the system is also modularit is possible to seamlessly integrate rule based extraction systems with a neural end-to-end system, thereby allowing rule based systems to supply extraction slots which MILIE can leverage for extracting the remaining slots. We confirm our hypothesis empirically: MILIE outperforms SOTA systems on multiple languages ranging from Chinese to Arabic. Additionally, we are the first to provide an OpenIE test dataset for Arabic and Galician.
%R 10.18653/v1/2022.acl-long.478
%U https://aclanthology.org/2022.acl-long.478
%U https://doi.org/10.18653/v1/2022.acl-long.478
%P 6939-6950
Markdown (Informal)
[MILIE: Modular & Iterative Multilingual Open Information Extraction](https://aclanthology.org/2022.acl-long.478) (Kotnis et al., ACL 2022)
ACL
- Bhushan Kotnis, Kiril Gashteovski, Daniel Rubio, Ammar Shaker, Vanesa Rodriguez-Tembras, Makoto Takamoto, Mathias Niepert, and Carolin Lawrence. 2022. MILIE: Modular & Iterative Multilingual Open Information Extraction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6939–6950, Dublin, Ireland. Association for Computational Linguistics.