@inproceedings{oprea-etal-2022-chatbot,
title = "Should a Chatbot be Sarcastic? Understanding User Preferences Towards Sarcasm Generation",
author = "Oprea, Silviu Vlad and
Wilson, Steven and
Magdy, Walid",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.530",
doi = "10.18653/v1/2022.acl-long.530",
pages = "7686--7700",
abstract = "Previous sarcasm generation research has focused on how to generate text that people perceive as sarcastic to create more human-like interactions. In this paper, we argue that we should first turn our attention to the question of when sarcasm should be generated, finding that humans consider sarcastic responses inappropriate to many input utterances. Next, we use a theory-driven framework for generating sarcastic responses, which allows us to control the linguistic devices included during generation. For each device, we investigate how much humans associate it with sarcasm, finding that pragmatic insincerity and emotional markers are devices crucial for making sarcasm recognisable.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="oprea-etal-2022-chatbot">
<titleInfo>
<title>Should a Chatbot be Sarcastic? Understanding User Preferences Towards Sarcasm Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silviu</namePart>
<namePart type="given">Vlad</namePart>
<namePart type="family">Oprea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walid</namePart>
<namePart type="family">Magdy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous sarcasm generation research has focused on how to generate text that people perceive as sarcastic to create more human-like interactions. In this paper, we argue that we should first turn our attention to the question of when sarcasm should be generated, finding that humans consider sarcastic responses inappropriate to many input utterances. Next, we use a theory-driven framework for generating sarcastic responses, which allows us to control the linguistic devices included during generation. For each device, we investigate how much humans associate it with sarcasm, finding that pragmatic insincerity and emotional markers are devices crucial for making sarcasm recognisable.</abstract>
<identifier type="citekey">oprea-etal-2022-chatbot</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.530</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.530</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>7686</start>
<end>7700</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Should a Chatbot be Sarcastic? Understanding User Preferences Towards Sarcasm Generation
%A Oprea, Silviu Vlad
%A Wilson, Steven
%A Magdy, Walid
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F oprea-etal-2022-chatbot
%X Previous sarcasm generation research has focused on how to generate text that people perceive as sarcastic to create more human-like interactions. In this paper, we argue that we should first turn our attention to the question of when sarcasm should be generated, finding that humans consider sarcastic responses inappropriate to many input utterances. Next, we use a theory-driven framework for generating sarcastic responses, which allows us to control the linguistic devices included during generation. For each device, we investigate how much humans associate it with sarcasm, finding that pragmatic insincerity and emotional markers are devices crucial for making sarcasm recognisable.
%R 10.18653/v1/2022.acl-long.530
%U https://aclanthology.org/2022.acl-long.530
%U https://doi.org/10.18653/v1/2022.acl-long.530
%P 7686-7700
Markdown (Informal)
[Should a Chatbot be Sarcastic? Understanding User Preferences Towards Sarcasm Generation](https://aclanthology.org/2022.acl-long.530) (Oprea et al., ACL 2022)
ACL