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Abstract

Structured document understanding has at-
tracted considerable attention and made sig-
nificant progress recently, owing to its cru-
cial role in intelligent document processing.
However, most existing related models can
only deal with the document data of specific
language(s) (typically English) included in
the pre-training collection, which is extremely
limited. To address this issue, we propose
a simple yet effective Language-independent
Layout Transformer (LiLT) for structured doc-
ument understanding. LiLT can be pre-trained
on the structured documents of a single lan-
guage and then directly fine-tuned on other
languages with the corresponding off-the-shelf
monolingual/multilingual pre-trained textual
models. Experimental results on eight lan-
guages have shown that LiLT can achieve com-
petitive or even superior performance on di-
verse widely-used downstream benchmarks,
which enables language-independent benefit
from the pre-training of document layout struc-
ture. Code and model are publicly available at
https://github.com/jpWang/LiLT.

1 Introduction

Structured document understanding (SDU) aims at
reading and analyzing the textual and structured
information contained in scanned/digital-born doc-
uments. With the acceleration of the digitization
process, it has been regarded as a crucial part of
intelligent document processing and required by
many real-world applications in various industries
such as finance, medical treatment and insurance.

Recently, inspired by the rapid development of
pre-trained language models of plain texts (Devlin
et al., 2019; Liu et al., 2019b; Bao et al., 2020;
Chi et al., 2021), many researches on structured
document pre-training (Xu et al., 2020, 2021a,b; Li
et al., 2021a,b,c; Appalaraju et al., 2021) have also
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(a) A form. (b) A receipt.

Figure 1: The substitution of language does not appear
obviously unnatural when the layout structure remains
unchanged, as shown in a (a) form/(b) receipt. The
detailed content has been re-synthesized to avoid the
sensitive information leak. Best viewed in zoomed-in.

pushed the limit of a variety of SDU tasks. How-
ever, almost all of them only focus on pre-training
and fine-tuning on the documents in a single lan-
guage, typically English. This is extremely limited
for other languages, especially in the case of lack-
ing pre-training structured document data.

In this regard, we consider how to make the SDU
tasks enjoy language-independent benefit from the
pre-training of document layout structure. Here,
we give an observation as shown in Figure 1. When
the layout structure remains unchanged, the substi-
tution of language does not make obvious unnatu-
ralness. It fully motivates us to decouple and reuse
the layout invariance among different languages.

Based on this inspiration, in this paper, we pro-
pose a simple yet effective Language-independent
Layout Transformer (LiLT) for structured docu-
ment understanding. In our framework, the text and
layout information are first decoupled and joint-
optimized during pre-training, and then re-coupled
for fine-tuning. To ensure that the two modali-
ties have sufficient language-independent interac-
tion, we further propose a novel bi-directional at-
tention complementation mechanism (BiACM) to
enhance the cross-modality cooperation. Moreover,
we present the key point location (KPL) and cross-
modal alignment identification (CAI) tasks, which
are combined with the widely-used masked visual-
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language modeling (MVLM) to serve as our pre-
training objectives. During fine-tuning, the layout
flow (LiLT) can be separated and combined with
the off-the-shelf pre-trained textual models (such
as RoBERTa (Liu et al., 2019b), XLM-R (Conneau
et al., 2020), InfoXLM (Chi et al., 2021), etc) to
deal with the downstream tasks. In this way, our
method decouples and learns the layout knowledge
from the monolingual structured documents before
generalizing it to the multilingual ones.

To the best of our knowledge, the only pre-
existing multilingual SDU model is LayoutXLM
(Xu et al., 2021b). It scraps multilingual PDF doc-
uments of 53 languages from a web crawler and
introduces extra pre-processing steps to clean the
collected data, filter the low-quality documents,
and classify them into different languages. After
this, it utilizes a heuristic distribution to sample 22
million multilingual documents, which are further
combined with the 8 million sampled English ones
from the IIT-CDIP (Lewis et al., 2006) dataset (11
million English documents), resulting 30 million
for pre-training with the LayoutLMv2 (Xu et al.,
2021a) framework. However, this process is time-
consuming and laborious. On the contrary, LiLT
can be pre-trained with only IIT-CDIP and then
adapted to other languages. In this respect, LiLT
is the first language-independent method for struc-
tured document understanding.

Experimental results on eight languages have
shown that LiLT can achieve competitive or even
superior performance on diverse widely-used down-
stream benchmarks, which substantially benefits
numerous real-world SDU applications. Our main
contributions can be summarized as follows:

• We introduce a simple yet effective language-
independent layout Transformer called LiLT
for monolingual/multilingual structured docu-
ment understanding.

• We propose BiACM to provide language-
independent cross-modality interaction, along
with an effective asynchronous optimization
strategy for textual and non-textual flows in
pre-training. Moreover, we present two new
pre-training objectives, namely KPL and CAI.

• LiLT achieves competitive or even superior
performance on various widely-used down-
stream benchmarks of different languages
under different settings, which fully demon-
strates its effectiveness.

2 LiLT

Figure 2 shows the overall illustration of our
method. Given an input document image, we first
use off-the-shelf OCR engines to get text bounding
boxes and contents. Then, the text and layout infor-
mation are separately embedded and fed into the
corresponding Transformer-based architecture to
obtain enhanced features. Bi-directional attention
complementation mechanism (BiACM) is intro-
duced to accomplish the cross-modality interaction
of text and layout clues. Finally, the encoded text
and layout features are concatenated and additional
heads are added upon them, for the self-supervised
pre-training or the downstream fine-tuning.

2.1 Model Architecture

The whole framework can be regarded as a parallel
dual-stream Transformer. The layout flow shares
a similar structure as text flow, except for the re-
duced hidden size and intermediate size to achieve
computational efficiency.

2.1.1 Text Embedding
Following the common practice (Devlin et al.,
2019; Xu et al., 2020), in the text flow, all text
strings in the OCR results are first tokenized and
concatenated as a sequence St by sorting the corre-
sponding text bounding boxes from the top-left to
bottom-right. Intuitively, the special tokens [CLS]
and [SEP] are also added at the beginning and end
of the sequence respectively. After this, St will be
truncated or padded with extra [PAD] tokens until
its length equals the maximum sequence length N .
Finally, we sum the token embedding Etoken of St

and the 1D positional embedding P1D to obtain the
text embedding ET ∈ RN×dT as:

ET = LN(Etoken + P1D), (1)

where dT is the number of text feature dimension
and LN is the layer normalization (Ba et al., 2016).

2.1.2 Layout Embedding
As for the layout flow, we construct a 2D posi-
tion sequence Sl with the same length as the token
sequence St using the corresponding text bound-
ing boxes. To be specific, we normalize and dis-
cretize all box coordinates to integers in the range
[0, 1000], and use four embedding layers to gener-
ate x-axis, y-axis, height, and width features sepa-
rately. Given the normalized bounding boxes B =
(xmin, xmax, ymin, ymax, width, height), the 2D
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Figure 2: The overall illustration of our framework. Text and layout information are separately embedded and fed
into the corresponding flow. BiACM is proposed to accomplish the cross-modality interaction. At the model output,
text and layout features are concatenated for the self-supervised pre-training or the downstream fine-tuning. Nl is
the number of Transformer layers. The red *M/*R indicates the randomly masked/replaced item for pre-training. t,
b and r represent token, box and region, respectively. Best viewed in zoomed-in.

positional embedding P2D ∈ RN×dL (where dL
is the number of layout feature dimension) is con-
structed as follows:

P2D = Linear(CAT(Exmin , Exmax ,

Eymin , Eymax ,Ewidth
, E

height
)). (2)

Here, the Es are embedded vectors. Linear is a
linear projection layer and CAT is the channel-
wise concatenation operation. The special to-
kens [CLS], [SEP] and [PAD] are also attached
with (0,0,0,0,0,0), (1000,1000,1000,1000,0,0) and
(0,0,0,0,0,0) respectively. It is worth mentioning
that, for each token, we directly utilize the bound-
ing box of the text string it belongs to, because the
fine-grained token-level information is not always
included in the results of some OCR engines.

Since Transformer layers are permutation-
invariant, here we introduce the 1D positional em-
bedding again. The resulting layout embedding
EL ∈ RN×dL can be formulated as:

EL = LN(P2D + P1D). (3)

2.1.3 BiACM
The text embedding ET and layout embedding EL

are fed into their respective sub-models to gen-
erate high-level enhanced features. However, it
will considerably ignore the cross-modal interac-
tion process if we simply combine the text and
layout features at the encoder output only. The net-
work also needs to comprehensively analyse them

at earlier stages. In view of this, we propose a new
bi-directional attention complementation mecha-
nism (BiACM) to strengthen the cross-modality
interaction across the entire encoding pipeline. Ex-
periments in Section 3.2 will further verify its ef-
fectiveness.

The vanilla self-attention mechanism in Trans-
former layers captures the correlation between
query xi and key xj by projecting the two vectors
and calculating the attention score as:

αij =
(xiW

Q)(xjW
K)

⊤
√
dh

. (4)

Here, the description is for a single head in a single
self-attention layer with hidden size of dh and pro-
jection metrics WQ, WK for simplicity. Given αT

ij

and αL
ij of the text and layout flows located in the

same head of the same layer, BiACM shares them
as common knowledge, which is formulated as:

α̃T
ij = αL

ij + αT
ij , (5)

α̃L
ij =

{
αL
ij +DETACH(αT

ij) if Pre-train,
αL
ij + αT

ij if Fine-tune.
(6)

In order to maintain the ability of LiLT to cooper-
ate with different off-the-shelf text models in fine-
tuning as much as possible, we heuristically adopt
the detached αT

ij for α̃L
ij , so that the textual stream

will not be affected by the gradient of non-textual
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one during pre-training, and its overall consistency
can be preserved. Finally, the modified attention
scores are used to weight the projected value vec-
tors for subsequent modules in both flows.

2.2 Pre-training Tasks

We conduct three self-supervised pre-training tasks
to guide the model to autonomously learn joint
representations with cross-modal cooperation. The
details are introduced below.

2.2.1 Masked Visual-Language Modeling

This task is originally derived from (Devlin et al.,
2019). MVLM randomly masks some of the input
tokens and the model is asked to recover them over
the whole vocabulary using the output encoded fea-
tures, driven by a cross-entropy loss. Meanwhile,
the non-textual information remains unchanged.
MVLM improves model learning on the language
side with cross-modality information. The given
layout embedding can also help the model better
capture both inter- and intra-sentence relationships.
We mask 15% text tokens, among which 80% are
replaced by the special token [MASK], 10% are re-
placed by random tokens sampled from the whole
vocabulary, and 10% remain the same.

2.2.2 Key Point Location

We propose this task to make the model better un-
derstand layout information in the structured docu-
ments. KPL equally divides the entire layout into
several regions (we set 7×7=49 regions by default)
and randomly masks some of the input bounding
boxes. The model is required to predict which re-
gions the key points (top-left corner, bottom-right
corner, and center point) of each box belong to us-
ing separate heads. To deal with it, the model is re-
quired to fully understand the text content and know
where to put a specific word/sentence when the sur-
rounding ones are given. We mask 15% boxes,
among which 80% are replaced by (0,0,0,0,0,0),
10% are replaced by random boxes sampled from
the same batch, and 10% remain the same. Cross-
entropy loss is adopted.

Since there may exist detection errors in the out-
put of OCR engines, we let the model predict the
discretized regions (as mentioned above) instead
of the exact location. This strategy can moderately
relax the punishment criterion while improving the
model performance.

2.2.3 Cross-modal Alignment Identification
We collect those encoded features of token-box
pairs that are masked and further replaced (mis-
aligned) or kept unchanged (aligned) by MVLM
and KPL, and build an additional head upon them
to identify whether each pair is aligned. To achieve
this, the model is required to learn the cross-modal
perception capacity. CAI is a binary classification
task, and a cross-entropy loss is applied for it.

2.3 Optimization Strategy
Utilizing a unified learning rate for all model pa-
rameters to perform the end-to-end training process
is the most common optimization strategy. While
in our case, it will cause the layout flow to contin-
uously update in the direction of coupling with
the evolving text flow in the pre-training stage,
which is harmful to the ability of LiLT to coop-
erate with different off-the-shelf textual models
during fine-tuning. Based on this consideration, we
explore multiple ratios to greatly slow down the
pre-training optimization of the text stream. We
also find that an appropriate reduction ratio is better
than parameter freezing.

Note that, we adopt a unified learning rate for
end-to-end optimization during fine-tuning. The
DETACH operation of BiACM is also canceled at
this time, as shown in Equation 6.

3 Experiments

3.1 Pre-training Setting
We pre-train LiLT on the IIT-CDIP Test Collec-
tion 1.0 (Lewis et al., 2006), which is a large-scale
scanned document image dataset and contains more
than 6 million documents with more than 11 mil-
lion scanned document images. We use TextIn
API1 to obtain the text bounding boxes and strings
for this dataset.

In this paper, we initialize the text flow from
the existing pre-trained English RoBERTaBASE

(Liu et al., 2019b) for our document pre-training,
and combine LiLTBASE with the pre-trained
InfoXLMBASE (Chi et al., 2021)/a new pre-trained
RoBERTaBASE for multilingual/monolingual fine-
tuning. They have an equal number of self-
attention layers, attention heads and maximum
sequence length, which ensures that BiACM can
work normally. In this BASE setting, LiLT has a
12-layer encoder with 192 hidden size, 768 feed-
forward filter size and 12 attention heads, resulting

1https://www.textin.com
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# Inter-modal Operation Average F1

1 CAT 0.6751
2 CAT+Co-Attention (Lu et al., 2019) 0.6276
3 CAT+BiACM 0.7963
4 CAT+BiACM−DETACH in pre-training 0.7682
5 CAT+BiACM+DETACH in fine-tuning 0.7822

6
The text flow alone
(InfoXLMBASE, as shown in Table 6)

0.7207

(a) BiACM. CAT is short for concatenation.

# MVLM KPL CAI Average F1

1 ✓ 0.7616
2 ✓ ✓ 0.7748
3 ✓ ✓ 0.7809
4 ✓ ✓ ✓ 0.7963

(b) Pre-training tasks.

# Slow-down Ratio Average F1

1 1 (No Slow-down) 0.7840
2 500 0.7901
3 800 0.7947
4 1000 0.7963
5 1200 0.7935
6 +∞ (Parameter Freezing) 0.7893

(c) Slow-down ratios.

Table 1: Ablation study of LiLTBASE combined with
InfoXLMBASE (Chi et al., 2021) on the FUNSD and
XFUND datasets (8 languages in total). The average F1
accuracy of language-specific semantic entity recogni-
tion (SER) task is given. (a) BiACM. (b) Pre-training
tasks. (c) Slow-down ratios of the pre-training optimiza-
tion for the text flow.

in the number of parameters as 6.1M. The maxi-
mum sequence length N is set as 512.

LiLTBASE is pre-trained using Adam optimizer
(Kingma and Ba, 2015; Loshchilov and Hutter,
2018), with the learning rate 2×10−5, weight decay
1×10−2, and (β1, β2) = (0.9, 0.999). The learning
rate is linearly warmed up over the first 10% steps
and then linearly decayed. We set the batch size
as 96 and train LiLTBASE for 5 epochs on the IIT-
CDIP dataset using 4 NVIDIA A40 48GB GPUs.

3.2 Ablation Study

Considering that the complete pre-training takes a
relatively long time, we pre-train LiLTBASE with
2M documents randomly sampled from IIT-CDIP
for 5 epochs to conduct ablation experiments, as
shown in Table 1.

We first evaluate the effect of introducing Bi-
ACM. In setting (a)#1, the text and layout fea-
tures are concatenated at the model output with-
out any further interaction. Compared with (a)#6,

Model Precision Recall F1

BERTBASE
1 0.5469 0.6710 0.6026

RoBERTaBASE
2 0.6349 0.6975 0.6648

UniLMv2BASE
3 0.6349 0.6975 0.6648

LayoutLMBASE
4 0.7597 0.8155 0.7866

BROSBASE
5 0.8056 0.8188 0.8121

SelfDoc6 - - 0.8336
LayoutLMv2BASE

7 0.8029 0.8539 0.8276
StrucTexTBASE

8 0.8568 0.8097 0.8309
DocFormerBASE

9 0.8076 0.8609 0.8334
⋆LayoutXLMBASE

10 0.7913 0.8158 0.8034

LiLT[EN-R2]BASE 0.8721 0.8965 0.8841
⋆LiLT[InfoXLM11]BASE 0.8467 0.8709 0.8586

Table 2: Comparison on the semantic entity recognition
(SER) task of FUNSD (Jaume et al., 2019) dataset. Bold
indicates the SOTA and underline indicates the second
best. “EN-R” is short for English RoBERTa. ⋆The
multilingual model. [] denotes the off-the-shelf tex-
tual model used as the text flow of LiLT. 1(Devlin et al.,
2019);2(Liu et al., 2019b);3(Bao et al., 2020);4(Xu et al.,
2020);5(Hong et al., 2020);6(Li et al., 2021b);7(Xu
et al., 2021a);8(Li et al., 2021c);9(Appalaraju et al.,
2021);10(Xu et al., 2021b);11(Chi et al., 2021).

we find that such a plain design results in a much
worse performance than using the text flow alone.
From (a)#1 to (a)#3, the significant improvement
demonstrates that it is the novel BiACM that makes
the transfer from “monolingual” to “multilingual”
successful. Beside this, we have also tried to re-
place BiACM with the co-attention mechanism
(Lu et al., 2019) which is widely adopted in dual-
stream Transformer architecture. It can be seen as
a “deeper” cross-modal interaction, since the keys
and values from each modality are passed as input
to the other modality’s dot-product attention cal-
culation. However, severe drops are observed as
shown in (a)#2 vs (a)#1#3. We attribute it to the
damage of such a “deeper” interaction to the over-
all consistency of the text flow in the pre-training
optimization. In contrast, BiACM can maintain
LiLT’s cross-model cooperation ability on the basis
of providing cross-modal information. Moreover,
the necessity of DETACH in pre-training is proved
in (a)#4 vs (a)#3. Compared (a)#3 to (a)#5, we can
also infer that removing DETACH in fine-tuning
leads to a better performance.

Then, we compare the proposed KPL and CAI
tasks. As shown in Table 1(b), both tasks improve
the model performance substantially, and the pro-
posed CAI benefits the model more than KPL. Us-
ing both tasks together is more effective than using
either one alone.
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Model Precision Recall F1

BERTBASE 0.8833 0.9107 0.8968
UniLMv2BASE 0.8987 0.9198 0.9092

LayoutLMBASE 0.9437 0.9508 0.9472
BROSBASE 0.9558 0.9514 0.9536
LAMBERTBASE

1 - - 0.9441
TILTBASE

2 - - 0.9511
LayoutLMv2BASE 0.9453 0.9539 0.9495
DocFormerBASE 0.9652 0.9614 0.9633
⋆LayoutXLMBASE 0.9456 0.9506 0.9481

LiLT[EN-R]BASE 0.9598 0.9616 0.9607
⋆LiLT[InfoXLM]BASE 0.9574 0.9581 0.9577

Table 3: Comparison on the semantic entity recogni-
tion (SER) task of CORD (Park et al., 2019) dataset.
1(Garncarek et al., 2021);2(Powalski et al., 2021).

Model Precision Recall F1

BiLSTM+CRF1 - - 0.8910
GraphIE2 - - 0.9026
GCN-based3 - - 0.9255
TRIE4 - - 0.9321
VIES5 - - 0.9523
MatchVIE6 - - 0.9687
TCPN7 - - 0.9759

RoBERTaBASE
8 0.9405 0.9640 0.9521

StrucTexTBASE - - 0.9795
⋆LayoutXLMBASE 0.9699 0.9820 0.9759

LiLT[ZH-R8]BASE 0.9762 0.9833 0.9797
⋆LiLT[InfoXLM]BASE 0.9699 0.9820 0.9759

Table 4: Comparison on the semantic entity recognition
(SER) task of EPHOIE (Wang et al., 2021a) dataset.
“ZH-R” is short for Chinese RoBERTa. 1(Lample et al.,
2016);2(Qian et al., 2019);3(Liu et al., 2019a);4(Zhang
et al., 2020);5(Wang et al., 2021a);6(Tang et al.,
2021);7(Wang et al., 2021b);8(Cui et al., 2020).

Finally, we explore the most suitable slow-down
ratio for the pre-training optimization of the text
flow. A ratio equal to 1 in (c)#1 means there is no
slow-down and a unified learning rate is adopted.
It can be found that the F1 scores keep rising with
the growth of slow-down ratios and begin to fall
when the ratio is greater than 1000. Consequently,
we set the slow-down ratio as 1000 by default.

3.3 Comparisons with the SOTAs

To demonstrate the performance of LiLT, we con-
duct experiments on several widely-used monolin-
gual datasets and the multilingual XFUND bench-
mark (Xu et al., 2021b). In addition to the ex-
periments involving typical language-specific fine-
tuning, we also follow the two settings designed

Model Accuracy

VGG-161 90.97%
Stacked CNN Single2 91.11%
Stacked CNN Ensemble2 92.21%
InceptionResNetV23 92.63%
LadderNet4 92.77%
Multimodal Single5 93.03%
Multimodal Ensemble5 93.07%

BERTBASE 89.81%
UniLMv2BASE 90.06%

LayoutLMBASE (w/ image) 94.42%
BROSBASE 95.58%
SelfDoc 93.81%
TILTBASE 93.50%
LayoutLMv2BASE 95.25%
DocFormerBASE 96.17%
⋆LayoutXLMBASE 95.21%

LiLT[EN-R]BASE 95.68%
⋆LiLT[InfoXLM]BASE 95.62%

Table 5: Comparison on the document classification
(DC) task of RVL-CDIP (Harley et al., 2015) dataset.
1(Afzal et al., 2017);2(Das et al., 2018);3(Szegedy et al.,
2017);4(Sarkhel and Nandi, 2019);5(Dauphinee et al.,
2019).

in (Xu et al., 2021b) to demonstrate the ability
to transfer knowledge among different languages,
which are zero-shot transfer learning and multitask
fine-tuning, for fair comparisons. Specifically, (1)
language-specific fine-tuning refers to the typical
fine-tuning paradigm of fine-tuning on language X
and testing on language X. (2) Zero-shot transfer
learning means the models are fine-tuned on En-
glish data only and then evaluated on each target
language. (3) Multitask fine-tuning requires the
model to fine-tune on data in all languages.

3.3.1 Language-specific Fine-tuning

We first evaluate LiLT on four widely-used mono-
lingual datasets - FUNSD (Jaume et al., 2019),
CORD (Park et al., 2019), EPHOIE (Wang et al.,
2021a) and RVL-CDIP (Lewis et al., 2006), and the
results are shown in Table 2, 3, 4 and 5. We have
found that (1) LiLT is flexible since it can work
with monolingual or multilingual plain text models
to deal with downstream tasks. (2) Although LiLT
is designed for the transfer from “monolingual” to
“multilingual”, it can surprisingly cooperate with
monolingual textual models to achieve competi-
tive or even superior performance (especially on
the FUNSD dataset with only a few training sam-
ples available), compared with existing language-
specific SDU models such as LayoutLMv2 and
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Task Model
Pre-training Docs FUNSD XFUND

Avg.
Language Size EN ZH JA ES FR IT DE PT

SER

XLM-RoBERTaBASE - - 0.6670 0.8774 0.7761 0.6105 0.6743 0.6687 0.6814 0.6818 0.7047
InfoXLMBASE - - 0.6852 0.8868 0.7865 0.6230 0.7015 0.6751 0.7063 0.7008 0.7207
LayoutXLMBASE Multilingual 30M 0.7940 0.8924 0.7921 0.7550 0.7902 0.8082 0.8222 0.7903 0.8056

LiLT[InfoXLM]BASE English only 11M 0.8415 0.8938 0.7964 0.7911 0.7953 0.8376 0.8231 0.8220 0.8251

RE

XLM-RoBERTaBASE - - 0.2659 0.5105 0.5800 0.5295 0.4965 0.5305 0.5041 0.3982 0.4769
InfoXLMBASE - - 0.2920 0.5214 0.6000 0.5516 0.4913 0.5281 0.5262 0.4170 0.4910
LayoutXLMBASE Multilingual 30M 0.5483 0.7073 0.6963 0.6896 0.6353 0.6415 0.6551 0.5718 0.6432

LiLT[InfoXLM]BASE English only 11M 0.6276 0.7297 0.7037 0.7195 0.6965 0.7043 0.6558 0.5874 0.6781

Table 6: Language-specific fine-tuning F1 accuracy on FUNSD and XFUND (fine-tuning on X, testing on X). “SER”
denotes the semantic entity recognition and “RE” denotes the relation extraction. [] indicates the off-the-shelf
textual model used as the text flow of LiLT.

DocFormer. (3) On these datasets which are widely
adopted for monolingual evaluation, LiLT gener-
ally performs better than LayoutXLM. This fully
demonstrates the effectiveness of our pre-training
framework and indicates that the layout and text
information can be successfully decoupled in pre-
training and re-coupled in fine-tuning.

Then we evaluate LiLT on language-specific
fine-tuning tasks of FUNSD and the multilingual
XFUND (Xu et al., 2021b), and the results are
shown in Table 6. Compared with the plain text
models (XLM-R/InfoXLM) or the LayoutXLM
model pre-trained with 30M multilingual struc-
tured documents, LiLT achieves the highest F1
scores on both the SER and RE tasks of each lan-
guage while using 11M monolingual data. This
significant improvement shows LiLT’s capability
to transfer language-independent knowledge from
pre-training to downstream tasks.

3.3.2 Zero-shot Transfer Learning
The results of cross-lingual zero-shot transfer are
presented in Table 7. It can be observed that the
LiLT model transfers the most knowledge from En-
glish to other languages, and significantly outper-
forms its competitors. This fully verifies that LiLT
can capture the common layout invariance among
different languages. Moreover, LiLT has never
seen non-English documents before evaluation un-
der this setting, while the LayoutXLM model has
been pre-trained with them. This is to say, LiLT
faces a stricter cross-lingual zero-shot transfer sce-
nario but achieves better performance.

3.3.3 Multi-task Fine-tuning
Table 8 shows the results of multitask learning. In
this setting, the pre-trained LiLT model is simul-
taneously fine-tuned with all eight languages and

evaluated for each specific language. We observe
that this setting further improves the model per-
formance compared to the language-specific fine-
tuning, which confirms that SDU can benefit from
commonalities in the layout of multilingual struc-
tured documents. In addition, LiLT once again
outperforms its counterparts by a large margin.

4 Related Work

During the past decade, deep learning methods be-
came the mainstream for document understanding
tasks (Yang et al., 2017; Augusto Borges Oliveira
et al., 2017; Siegel et al., 2018). Grid-based meth-
ods (Katti et al., 2018; Denk and Reisswig, 2019;
Lin et al., 2021) were proposed for 2D document
representation where text pixels were encoded us-
ing character or word embeddings and classified
into specific field types, using a convolutional neu-
ral network. GNN-based approaches (Liu et al.,
2019a; Yu et al., 2021; Tang et al., 2021) adopted
multi-modal features of text segments as nodes to
model the document graph, and used graph neural
networks to propagate information between neigh-
boring nodes to attain a richer representation.

In recent years, self-supervised pre-training has
achieved great success. Inspired by the develop-
ment of the pre-trained language models in various
NLP tasks, recent studies on structured document
pre-training (Xu et al., 2020, 2021a,b; Li et al.,
2021a,b,c; Appalaraju et al., 2021) have pushed the
limits. LayoutLM (Xu et al., 2020) modified the
BERT (Devlin et al., 2019) architecture by adding
2D spatial coordinate embeddings. In compari-
son, our LiLT can be regarded as a more powerful
and flexible solution for structured document un-
derstanding. LayoutLMv2 (Xu et al., 2021a) im-
proved over LayoutLM by treating the visual fea-
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Task Model
Pre-training Docs FUNSD XFUND

Avg.
Language Size EN ZH JA ES FR IT DE PT

SER

XLM-RoBERTaBASE - - 0.6670 0.4144 0.3023 0.3055 0.3710 0.2767 0.3286 0.3936 0.3824
InfoXLMBASE - - 0.6852 0.4408 0.3603 0.3102 0.4021 0.2880 0.3587 0.4502 0.4119
LayoutXLMBASE Multilingual 30M 0.7940 0.6019 0.4715 0.4565 0.5757 0.4846 0.5252 0.5390 0.5561

LiLT[InfoXLM]BASE♠ English only 11M 0.8415 0.6152 0.5184 0.5101 0.5923 0.5371 0.6013 0.6325 0.6061

RE

XLM-RoBERTaBASE - - 0.2659 0.1601 0.2611 0.2440 0.2240 0.2374 0.2288 0.1996 0.2276
InfoXLMBASE - - 0.2920 0.2405 0.2851 0.2481 0.2454 0.2193 0.2027 0.2049 0.2423
LayoutXLMBASE Multilingual 30M 0.5483 0.4494 0.4408 0.4708 0.4416 0.4090 0.3820 0.3685 0.4388

LiLT[InfoXLM]BASE♠ English only 11M 0.6276 0.4764 0.5081 0.4968 0.5209 0.4697 0.4169 0.4272 0.4930

Table 7: Cross-lingual zero-shot transfer F1 accuracy on FUNSD and XFUND (fine-tuning on FUNSD, testing on
X). ♠ indicates that LiLT faces a stricter zero-shot transfer scenario compared with LayoutXLM, since it has never
seen non-English documents before evaluation, even during pre-training.

Task Model
Pre-training Docs FUNSD XFUND

Avg.
Language Size EN ZH JA ES FR IT DE PT

SER

XLM-RoBERTaBASE - - 0.6633 0.8830 0.7786 0.6223 0.7035 0.6814 0.7146 0.6726 0.7149
InfoXLMBASE - - 0.6538 0.8741 0.7855 0.5979 0.7057 0.6826 0.7055 0.6796 0.7106
LayoutXLMBASE Multilingual 30M 0.7924 0.8973 0.7964 0.7798 0.8173 0.8210 0.8322 0.8241 0.8201

LiLT[InfoXLM]BASE English only 11M 0.8574 0.9047 0.8088 0.8340 0.8577 0.8792 0.8769 0.8493 0.8585

RE

XLM-RoBERTaBASE - - 0.3638 0.6797 0.6829 0.6828 0.6727 0.6937 0.6887 0.6082 0.6341
InfoXLMBASE - - 0.3699 0.6493 0.6473 0.6828 0.6831 0.6690 0.6384 0.5763 0.6145
LayoutXLMBASE Multilingual 30M 0.6671 0.8241 0.8142 0.8104 0.8221 0.8310 0.7854 0.7044 0.7823

LiLT[InfoXLM]BASE English only 11M 0.7407 0.8471 0.8345 0.8335 0.8466 0.8458 0.7878 0.7643 0.8125

Table 8: Multitask fine-tuning F1 accuracy on FUNSD and XFUND (fine-tuning on 8 languages all, testing on X).

tures as separate tokens. Furthermore, additional
pre-training tasks were explored to improve the uti-
lization of unlabeled document data. SelfDoc (Li
et al., 2021b) established the contextualization over
a block of content, while StructuralLM (Li et al.,
2021a) proposed cell-level 2D position embeddings
and the corresponding pre-training objective. Re-
cently, StrucTexT (Li et al., 2021c) introduced a
unified solution to efficiently extract semantic fea-
tures from different levels and modalities to handle
the entity labeling and entity linking tasks. Doc-
Former (Appalaraju et al., 2021) designed a novel
multi-modal self-attention layer capable of fusing
textual, vision and spatial features.

Nevertheless, the aforementioned SDU ap-
proaches mainly focus on a single language - typ-
ically English, which is extremely limited with
respect to multilingual application scenarios. To
the best of our knowledge, LayoutXLM (Xu et al.,
2021b) was the only pre-existing multilingual SDU
model, which adopted the multilingual textual
model InfoXLM (Chi et al., 2021) as the initial-
ization, and adapted the LayoutLMv2 (Xu et al.,
2021a) framework to multilingual structured doc-
ument pre-training. However, it required a heavy
process of multilingual data collection, cleaning
and pre-training. On the contrary, our LiLT can

deal with the multilingual structured documents
by pre-training on the monolingual IIT-CDIP Test
Collection 1.0 (Lewis et al., 2006) only.

5 Conclusion

In this paper, we present LiLT, a language-
independent layout Transformer that can learn the
layout knowledge from monolingual structured
documents and then generalize it to deal with
multilingual ones. Our framework successfully
first decouples the text and layout information
in pre-training and then re-couples them for fine-
tuning. Experimental results on eight languages un-
der three settings (language-specific, cross-lingual
zero-shot transfer, and multi-task fine-tuning) have
fully illustrated its effectiveness, which substan-
tially bridges the language gap in real-world struc-
tured document understanding applications. The
public availability of LiLT is also expected to pro-
mote the development of document intelligence.

For future research, we will continue to follow
the pattern of transferring from “monolingual” to
“multilingual” and further unlock the power of LiLT.
In addition, we will also explore the generalized
rather than language-specific visual information
contained in multilingual structured documents.
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Appendix

A Dataset Details

FUNSD FUNSD (Jaume et al., 2019) is an En-
glish dataset for form understanding in noisy
scanned documents. It contains 199 real, fully
annotated, scanned forms where 9,707 semantic
entities are annotated above 31,485 words. The
199 samples are split into 149 for training and 50
for testing. We directly use the official OCR anno-
tations. The semantic entity recognition (SER) task
is assigning to each word a semantic entity label
from a set of four predefined categories: question,
answer, header, or other. The entity-level F1 score
is used as the evaluation metric (Table 2).

CORD CORD (Park et al., 2019) is an English
receipt dataset for key information extraction. Its
publicly available subset includes 800 receipts for
the training set, 100 for the validation set, and 100
for the test set. A photo and a list of OCR anno-
tations are equipped for each receipt. The dataset
defines 30 fields under 4 categories and the task
aims to label each word to the right field. The eval-
uation metric is the entity-level F1 score, as shown
in Table 3. We use the official OCR annotations.

EPHOIE EPHOIE (Wang et al., 2021a) is col-
lected from actual Chinese examination papers
with the diversity of text types and layout distri-
bution. The 1,494 samples are divided into a train-
ing set with 1,183 images and a testing set with
311 images, respectively. It defines ten entity cate-
gories, and we provide the entity-level F1 score for
RoBERTa, LayoutXLM and LiLT in Table 4. The
official OCR annotations are adopted.

RVL-CDIP RVL-CDIP (Harley et al., 2015) con-
sists of 400,000 gray-scale images of English doc-
uments, with 8:1:1 for the training set, validation
set, and test set. A multi-class single-label classifi-
cation task is defined on RVL-CDIP. The images
are categorized into 16 classes, with 25,000 images
per class. The evaluation metric is the overall clas-
sification accuracy as shown in Table 5. Text and
layout information are extracted by TextIn API.

XFUND XFUND (Xu et al., 2021b) is a multilin-
gual form understanding dataset that contains 1,393
fully annotated forms with seven languages includ-
ing Chinese (ZH), Japanese (JA), Spanish (ES),
French (FR), Italian (IT), German (DE), and Por-
tuguese (PT). Each language includes 199 forms,

where the training set includes 149 forms, and the
test set includes 50 forms. We focus on the seman-
tic entity recognition (SER) and relation extraction
(RE) tasks defined in the original paper (Xu et al.,
2021b). Relation extraction aims to predict the re-
lation between any two given semantic entities, and
we mainly focus on the key-value relation extrac-
tion. We use the official OCR results, and the same
F1 accuracy evaluation metric as in LayoutXLM
(Xu et al., 2021b) for Table 6, 7 and 8.

B Fine-tuning Details

Fine-tuning for Semantic Entity Recognition
We conduct the semantic entity recognition task
on FUNSD, CORD, EPHOIE and XFUND. We
build a token-level classification layer above the
output representations to predict the BIO tags for
each entity field.

Fine-tuning for Document Classification This
task depends on high-level visual information,
thereby we leverage the image features explicitly
in the fine-tuning stage, following LayoutLMv2
(Xu et al., 2021a). We pool the visual feature of
the ResNeXt101-FPN (Xie et al., 2017; Lin et al.,
2017) backbone into a global feature, concatenate
it with the [CLS] output feature, and feed them
into the final classification layer.

Fine-tuning for Relation Extraction We build
the additional head for relation extraction on the
FUNSD and XFUND datasets following (Xu et al.,
2021b) for fair comparison. We first incrementally
construct the set of relation candidates by produc-
ing all possible pairs of given semantic entities. For
every pair, the representation of the head/tail entity
is the concatenation of the first token vector in each
entity and the entity type embedding obtained with
a specific type embedding layer. After respectively
projected by two FFN layers, the representations
of head and tail are concatenated and then fed into
a bi-affine classifier.
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