An Information-theoretic Approach to Prompt Engineering Without Ground Truth Labels

Taylor Sorensen, Joshua Robinson, Christopher Rytting, Alexander Shaw, Kyle Rogers, Alexia Delorey, Mahmoud Khalil, Nancy Fulda, David Wingate


Abstract
Pre-trained language models derive substantial linguistic and factual knowledge from the massive corpora on which they are trained, and prompt engineering seeks to align these models to specific tasks. Unfortunately, existing prompt engineering methods require significant amounts of labeled data, access to model parameters, or both. We introduce a new method for selecting prompt templates without labeled examples and without direct access to the model. Specifically, over a set of candidate templates, we choose the template that maximizes the mutual information between the input and the corresponding model output. Across 8 datasets representing 7 distinct NLP tasks, we show that when a template has high mutual information, it also has high accuracy on the task. On the largest model, selecting prompts with our method gets 90% of the way from the average prompt accuracy to the best prompt accuracy and requires no ground truth labels.
Anthology ID:
2022.acl-long.60
Volume:
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
May
Year:
2022
Address:
Dublin, Ireland
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
819–862
Language:
URL:
https://aclanthology.org/2022.acl-long.60
DOI:
10.18653/v1/2022.acl-long.60
Bibkey:
Cite (ACL):
Taylor Sorensen, Joshua Robinson, Christopher Rytting, Alexander Shaw, Kyle Rogers, Alexia Delorey, Mahmoud Khalil, Nancy Fulda, and David Wingate. 2022. An Information-theoretic Approach to Prompt Engineering Without Ground Truth Labels. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 819–862, Dublin, Ireland. Association for Computational Linguistics.
Cite (Informal):
An Information-theoretic Approach to Prompt Engineering Without Ground Truth Labels (Sorensen et al., ACL 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.acl-long.60.pdf
Software:
 2022.acl-long.60.software.zip
Data
BoolQCOPACommonsenseQAIMDb Movie ReviewsLAMBADA