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Abstract

Transformer-based language models such as
BERT (Devlin et al., 2018) have achieved the
state-of-the-art performance on various NLP
tasks, but are computationally prohibitive. A
recent line of works use various heuristics
to successively shorten sequence length while
transforming tokens through encoders, in tasks
such as classification and ranking that re-
quire a single token embedding for predic-
tion. We present a novel solution to this
problem, called Pyramid-BERT where we re-
place previously used heuristics with a core-
set based token selection method justified by
theoretical results. The core-set based token
selection technique allows us to avoid expen-
sive pre-training, gives a space-efficient fine
tuning, and thus makes it suitable to handle
longer sequence lengths. We provide extensive
experiments establishing advantages of pyra-
mid BERT over several baselines and exist-
ing works on the GLUE benchmarks and Long
Range Arena (Tay et al., 2020) datasets.

1 Introduction

Transformers (Vaswani et al., 2017) have gradually
become a key component for many state-of-the-
art natural language representation models. A re-
cent Transformer based model BERT (Devlin et al.,
2018), and its variations, achieved the state-of-the-
art results on various natural language processing
tasks, including machine translation (Wang et al.,
2019a; Liu et al., 2020), question-answering (De-
vlin et al., 2018; Yang et al., 2019), text classifica-
tion (Goyal et al., 2020; Xu et al., 2019), semantic
role labeling (Strubell et al., 2018), and so on. How-
ever, it takes substantial computational resources to
pre-train, fine-tune, or infer such models. The com-
plexity of Transformers is mainly due to a pipeline
of encoders, each of which contains a multi-head
self-attention layer. The self-attention operation
scales quadratically with the input sequence length,

which is a bottleneck especially for long-sequence
data.

Given this challenge, intensive efforts have been
focused on compressing and accelerating Trans-
formers to reduce the cost of pre-training and fine-
tuning. This work is particularly inspired by the
sequence-level NLP tasks such as text classifica-
tion and ranking. The state-of-the-art Transformer
models for these tasks utilize a single embedding
from the top encoder layer, such as the CLS to-
ken, for prediction. Under such regime, retaining
full-length sequence till the last encoder creates
unnecessary complexity. We follow a line of works
detailed in Section 2 that aim to gradually reduce
the sequence length in the pipeline of encoders. On
a high level, the existing works have two compo-
nents: Select : a mechanism in charge of reducing
the sequence length, either by pruning or pooling,
Train-Select : a training or fine-tuning procedure
dedicated to this mechanism.

Our main contribution is a novel solution for Se-
lect , motivated from the following observation: As
we consider the token representations in top lay-
ers, they have increasing redundancy among them-
selves. We provide a quantitative study demonstrat-
ing this in Figure 1. A collection of tokens with
high redundancy can intuitively be represented by a
small core-set, composed of a subset of the tokens.
Inspired by this, our solution for Select is based on
the idea of core-sets. We provide a theoretically
motivated approach that becomes more effective
as the redundancy in the representation increases.
This concept separates our work from previous
art that provide heuristic techniques for sequence
length reduction, or approaches that require expen-
sive training. All of these can in fact be shown to
fail in toy examples with high redundancy, e.g. the
same representation duplicated multiple times.

For Train-Select there is some variety in previous
art. Some require a full pre-training procedure, and
others require a fine-tuning procedure that works
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on the full uncompressed model, meaning one that
keeps all tokens until the final encoder layer. The
high quality of our solution to Select allows us to
simply avoid this additional training phase alto-
gether. The result of this simplification is quite
impactful. We obtain a speedup and memory re-
duction not only to the inference but to the training
process itself. This makes it possible to use stan-
dard hardware (and training scripts) in the training
procedure even for very long sequences.

In Section 6 we provide an empirical compari-
son of our technique with SOTA alternatives and
show that it is superior in eliminating redundancy
among the tokens, and thus greatly improves the
final classification accuracy. In particular, our ex-
periments on the GLUE benchmarks show that our
method achieves up to 3-3.5X inference speedup
while maintaining an accuracy (mean value over
all GLUE datasets) drop of 1.5%, whereas the best
baseline suffers a 2.5% drop. We show that our
method can be combined with long-text Transform-
ers such as Big Bird (Zaheer et al., 2020) and Per-
formers (Choromanski et al., 2020) to further al-
leviate the quadratic space complexity of the self-
attention mechanism. Empirical experiments on
the Long Range Arena (LRA) (Tay et al., 2020)
show that our model achieves a better trade-off be-
tween space complexity reduction and accuracy in
comparison to its competitors. In particular, when
working with Performers and reducing the space
complexity by 70%, while baselines suffer a drop
in accuracy of 4% or more, our technique actually
improves the accuracy as it acts as a regularizer.

Concluding, our paper provides a novel, theo-
retically justified technique for sequence length
reduction, achieving a speedup and memory reduc-
tion for both training and inference of transformers,
while suffering significantly less in terms of predic-
tive performance when compared to other existing
techniques. Our methods are vetted via thorough
empirical studies comparing it against SOTA meth-
ods and examining its different components.

2 Related Works

There have been a number of interesting attempts,
that were aimed at model compression for Trans-
formers, which can be broadly categorized into
three directions. The first line of work focus on the
redundancy of model parameters. Structure prun-
ing (McCarley, 2019; Michel et al., 2019; Voita
et al., 2019; Wang et al., 2019b; Fan et al., 2019;

Wu et al., 2021a), which removes coherent groups
of weights to preserve the original structure of the
network, is one common strategy. In addition, var-
ious types of distillation techniques (Sanh et al.,
2019; Sun et al., 2019; Jiao et al., 2019; Wang et al.,
2020b) have been proposed to remove encoders by
training a compact Transformer to reproduce the
output of a larger one. Other strategies include
weight quantization (Bhandare et al., 2019; Zafrir
et al., 2019; Shen et al., 2020; Fan et al., 2020) and
weight sharing (Dehghani et al., 2018; Lan et al.,
2019). The second line of work focus on reducing
the quadratic operation of the self-attention matri-
ces. The quadratic time and space complexity of
the attention mechanism with respect to the input
sequence serves the main efficiency bottleneck of
Transformers, and thus is prohibitively expensive
for training long-sequence data. One popular ap-
proach is to sparsify the self-attention operation
by restricting each token to only attend a subset of
tokens (Child et al., 2019; Kitaev et al., 2020; Ye
et al., 2019; Qiu et al., 2019; Ainslie et al., 2020;
Zaheer et al., 2020; Beltagy et al., 2020). In partic-
ular, the most recent Big Bird (Zaheer et al., 2020)
and Longformer (Beltagy et al., 2020) introduce
sparse models which scale linearly with the input
sequence. Another popular approach (Wang et al.,
2020a; Choromanski et al., 2020) is to approximate
the self-attention to reduce its quadratic complexity
to linear, where the most recent Performers (Choro-
manski et al., 2020) provides an unbiased linear
estimation of the attention matrices.

The third line, which our work lies in, focus
on the redundancy in maintaining a full-length se-
quence of token-level representation across all en-
coders (Dai et al., 2020; Pietruszka et al., 2020; Ye
et al., 2021; Kim and Cho, 2020). This work is par-
ticularly inspired by the sequence-level NLP tasks
such as text classification and ranking, where the
state-of-the-art approach utilizes a single embed-
ding from the top encoder layer of a Transformer,
such as the CLS token, for prediction. Under such
regime, retaining the full-length sequence till the
last encoder creates unnecessary complexity. Dai
et al. (2020) applied a simplest strided mean pool-
ing to each sliding window of the sequence to grad-
ually compress tokens. The paper proposed a spe-
cialized pre-training procedure for this process that
achieves a good balance between speedup and ac-
curacy drop. In comparison we aim to avoid the
costly pre-training step and focus on a method that
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requires only a lightweight fine-tuning. Wu et al.
(2021b) define a centroid attention operator that
given centroids, computes their embeddings via
an attention mechanism. These centroids are cho-
sen either as a random subset of the original to-
kens, or via strided mean pooling. This results in
a similar technique to that of Dai et al. (2020), in
terms of having a naive sequence length reduction
method. Pietruszka et al. (2020) provide a variant
of length 2 strided mean pooling where instead of
taking the unweighted average of each pair, they
provide learnable weights via a differentiable linear
function. In our experiment we did not compare
our methods with (Wu et al., 2021b; Pietruszka
et al., 2020) since both worked on a limited (non-
standard) collection of datasets and at the time of
writing this paper, did not provide code allowing us
to reproduce their result. Since our paper is focused
on techniques to select a subset of tokens and these
papers use either random sampling or pooling, we
do not believe a thorough comparison is required.
Ye et al. (2021) proposed a reinforcement-learning
based technique to rank the tokens, thereby allow-
ing it to remove the least important ones. This RL
policy must be trained in an expensive process that
requires the full network structure. Since we focus
on methods to improve both training and inference,
we do not include it in our experiments. Vision
Transformers (Pan et al., 2021; Heo et al., 2021),
which apply various types of pooling techniques
to reduce input length, are specially designed for
image data and thus non-trivial to compare with
our method. Early exiting approaches (Xin et al.,
2020; Zhou et al., 2020), which allow samples to
exit early based on redundancy, are orthogonal to
our technique. Goyal et al. (2020) developed an
attention based mechanism to progressively elim-
inate tokens in the intermediate encoders in the
fine-tuning, while maintaining the classification
accuracy.

3 Pyramid BERT
Background. A Transformer model, e.g. BERT,
takes a sequence of tokens as input for each input
sentence. The sequence of tokens consists of a
CLS token followed by the tokens generated by to-
kenizing the input sentence. For batch processing,
an appropriate sequence length N is chosen, and
shorter input sentences are padded to achieve an
uniform length N . The embedding layer E em-
beds each token into a vector of real numbers of a
fixed dimension. For each input sentence, the token

embeddings are transformed through a pipeline of
encoders and the self-attention mechanism. Each
encoder takes all the N embeddings as input, and
outputs updated N embeddings of the same di-
mension. The time and space complexity of the
self-attention scales quadratically with the input
sequence length N .

Motivation. The state-of-the-art BERT utilizes
only the CLS token from the top encoder layer for
tasks such as classification and ranking. A natural
question is: do we need to propagate all the token
embeddings through the entire pipeline of encoders
when only the top layer CLS embedding is used for
prediction? In general, yes, since the self-attention
transforms all the embeddings together, updating
each one by capturing information from all the
others. However, if two or more tokens are exact
duplicates of each other, ignoring the positional
embedding, then one can easily remove the dupli-
cates from the input and modify the self-attention
appropriately to get the same CLS embedding at
the top layer, and hence the same prediction. This
would reduce the number of FLOPs carried out in
each self-attention layer.

Figure 1: SST-2 dev set: Histogram of (a) similarity
between CLS and all the other tokens (top row) (b) the
number of clusters returned by DBSCAN (bottom row),
over all the inputs at encoder 1, 6, and 12.

In general, input sentences do not contain du-
plicate tokens. However, a preliminary study of
token embeddings show that as the embeddings
propagate through the pipeline of encoders, they
become more similar to the CLS token, Figure 1
(top row). A deeper investigation shows that they
also become more similar with each other and form
clusters among themselves, Figure 1 (bottom row).

In this work, we exploit these observations, and
present pyramid BERT, a novel BERT architecture,
that reduces computational and space complexity
of fine-tuning and inference of BERT while incur-
ring minimal performance degradation. The pyra-
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Figure 2: Illustration of Pyramid-BERT.

mid BERT works for all the downstream tasks that
only use the top layer CLS token for prediction,
such as classification and ranking.

Architecture. The pyramid BERT successively
selects subsets of tokens in each encoder layer to
propagate them to the next encoder. An illustration
of pyramid BERT is shown in Figure 2. It involves
two main components over BERT: (a) A sequence-
length configuration: a monotonically decreasing
sequence ` = (`1, `2, · · · , `L) that specifies the
number of tokens to retain in each of the L en-
coders, for all the input examples. (b) A core-set
based token selection methodology which in each
j-th encoder, given `j−1 token embeddings from
the (j − 1)-th encoder selects a subset of it of size
`j to propagate them to the next encoder. Note that
the rest of pyramid BERT architecture is same as
the BERT, and it has exactly the same number of
parameters as the BERT.

In Section 4, we provide a theoretical derivation
of the core-set based token selection methodology
by minimizing an upper bound of successive token
selection loss. To computationally perform the
core-set based token selection, we provide a greedy
k-center algorithm in Section 5.1. In Section 5.2,
we present a simple yet effective approach to select
the sequence-length configuration ` for a desired
time/space complexity reduction.

4 Coreset Based Token Selection

Problem Definition. We are interested in a C
class classification problem defined over a com-
pact space X and a label space Y = {1, 2, · · · , C}.
We consider a loss function Lw(·, ·) : X ×Y → R
which is parametrized over the hypothesis class
(w), the parameters of the transformer network

(e.g. BERT), and a set of training data points
sampled i.i.d. over the space Z = X × Y as
{xi, yi}i∈[n] ∼ pZ where [n] = {1, 2, · · · , n}.

Let T denote a token selection algorithm. For an
example input x, let the input and output embed-
dings of the token selection algorithm T at encoder
j be S̃j and Sj respectively. The size of the two sets
are |S̃j | = `j−1, and |Sj | = `j . In particular, at
each encoder j, the algorithm T selects `j embed-
dings of the input set S̃j as the output set Sj , and
eliminates the remaining `j−1 - `j embeddings in
S̃j . Let S̃ = {S̃j}j∈[L], and S = {Sj}j∈[L]. Given
the underlying BERT parameters w, the sequence
length configuration `, and the classification loss
Lw, pyramid BERT solves the token selection prob-
lem by minimizing the population risk as follows:

min
{S:Sj⊆S̃j ,|Sj |≤`j}j∈[L]

Ex,y∼pZ
[
Lw(x, y, S̃,S)

]
.

(1)

Method. In order to design an optimal token selec-
tion algorithm T , we consider the following upper
bound of the token selection loss defined in (1):

Ex,y∼pZ [L(x, y, S̃,S)]︸ ︷︷ ︸
pyramid BERT population risk

≤ 1

n

n∑
i=1

L(xi, yi)︸ ︷︷ ︸
BERT training error

+

∣∣∣∣Ex,y∼pZ [L(x, y, S̃,S)]−
1

n

n∑
i=1

L(xi, yi, S̃i,Si)
∣∣∣∣︸ ︷︷ ︸

pyramid BERT generalization error

+
1

n

n∑
i=1

∣∣∣∣L(xi, yi)− L(xi, yi, S̃i,Si)
∣∣∣∣︸ ︷︷ ︸

pyramid BERT token selection loss

. (2)

For ease of notation, we write Lw as L. The above
bound follows immediately from the triangle in-
equality. For the first two terms in the above bound:
the BERT training error is a constant for fixed pa-
rameters w, and the generalization error of mod-
els like BERT is known to be small (Hao et al.,
2019; Jakubovitz et al., 2019). Therefore, we re-
define the token selection problem, Equation 1, to
minimize the third term, the pyramid BERT token
selection loss

1

n

n∑
i=1

min
{Si:|(Sij)|≤`j}

∣∣∣∣L(xi, yi)− L(xi, yi, S̃i,Si)
∣∣∣∣ .

(3)

To solve Equation 3, we first optimize a slightly
different token selection algorithm T ∗ for a model
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pyramid∗ BERT. In pyramid∗ the embedding se-
quence length is not reduced across the encoder
layers. Let S̃∗j and S∗j denote the set of input and
output embeddings of T ∗, where the size of the
two sets is equal to the input sequence length N ,
|S̃∗j | = |S∗j | = N . Given an input set S̃∗j in encoder
j, the algorithm T ∗ first selects a subset of it of
size `j , which is exactly same as Sj selected by T
in pyramid BERT. Next, instead of eliminating the
remaining N − `j embeddings in S̃∗j as is done by
T , the T ∗ replaces them with their nearest embed-
ding in Sj to form the output set S∗j . The unique
embeddings of the output set S∗j of pyramid∗ BERT
are exactly same as the embeddings of output set
Sj of pyramid BERT, that is unique(S∗j ) = Sj. We
make the following observation.

Remark 1 A pyramid∗ BERT can be reduced to a
pyramid BERT with a weighted self attention net-
work. The weighted self attention network weighs
attention scores according to the duplicity of the
tokens in the embeddings of pyramid∗ BERT.

Given the above remark, we optimize the token
selection problem for pyramid∗ BERT. In the the-
orem below, we give an upper bound for the to-
ken selection loss stated in (3) for pyramid∗ BERT.
The proof relies on λ-Lipschitz continuity of the
encoder and classification layers. A function f
is λ-Lipschitz continuity if, ‖f(x) − f(x′)‖ ≤
λ‖x− x′‖, for all x, x′ ∈ domain(f).

Theorem 1 If the classification layer is λC-
Lipschitz, and for all j ∈ [L], the encoder Ej

is λj-Lipschitz continuous for all its parameters,
and T ∗ is a token selection algorithm such that
the unique elements of the output embedding set
unique(S∗j ) is a δ-cover of the input embedding set

S̃∗j , and the N − `j remaining elements in S̃∗j \ S∗j
are replaced in S∗j by their nearest elements in
unique(S∗j ), then for all i such that xi is bounded,
the following holds:∣∣∣L(xi, yi)− L(xi, yi, S̃∗i ,S∗i )

∣∣∣
≤ δλC

L∑
j=1

(
(N − `j)

L∏
a=j

λa

)
. (4)

We visualize the concept of δ-cover in Figure 3.
The set of red points (i.e., token embeddings in our
case) with radius δ covers the entire set of points.
Theorem 1 suggests that we can bound the token
selection loss of algorithm T ∗ for pyramid∗ BERT
with the δ-cover core-set token selection. The loss

Figure 3: Illustration of δ cover core-set.

goes to zero as the covering radius δ goes to zero.
A proof of the theorem is given in Appendix A.2.

From Remark 1, the optimal choice of token
selection for pyramid BERT is same as the opti-
mal choice of unique tokens selected in pyramid∗

BERT, up to weighing of self-attention. How-
ever, in numerical experiments we found that fine-
tuning pyramid BERT with the core-set based to-
ken selection performs better than weighing the
self-attention. The δ-cover core-set token selection
problem is equivalent to the k-Center problem (also
called min-max facility location problem) (Wolf,
2011). We explain how we solve the k-Center prob-
lem using a greedy approximation algorithm in
§5.1.

5 Pyramid BERT: Algorithm

Given a pre-trained BERT, we create a fine-tuned
pyramid BERT as follows. For the core-set selec-
tion module shown in Figure 2, we implement a
k-Center-greedy-batch-m algorithm, Section 5.1,
to approximately select the core-set of embeddings.
We fine-tune all the trainable parameters of the
pyramid BERT for different choices of sequence-
length configurations `, according to approach
given in Section 5.2. We select the optimal configu-
ration ` satisfying the required inference speed-up
or the space complexity reduction. The selected op-
timal choice of ` is kept fixed during inference. We
note that our practical implementation of pyramid
BERT, proposed here, is not exactly the same as the
theoretical token selection algorithm analyzed in
the previous section. In Appendix A.1, we justify
the differences between the two.

5.1 Token Selection Algorithm

The δ-cover core-set problem is equivalent to k-
Center problem which is NP-Hard. However, it is
possible to obtain a 2×OPT solution of k-Center
using a greedy approach (Cook et al., 2009). The
greedy approach selects the core-set of size k one-
by-one, making it un-parallelizable, and hence runs
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Algorithm 1: k-Center-greedy-batch-m
Data: Input set S̃, the number of centers to add per

iteration m.
Result: Output set S, with |S| = k.
Initialize S = {CLS embedding}
while |S| < k do

M = {}
while |M | ≤ m do

s = argmaxu∈S̃\S minv∈S distance(u, v)
M = M ∪ {s}

end
S = S ∪M

end
return S

slow on GPUs. For pyramid BERT, we developed
a parallelizable version of this greedy approach,
Algorithm 1, which selects m centers at a time.

5.2 Sequence-length Configuration
For the sequence-length configuration `, we re-
strict the sequences to be exponentially decaying.
Specifically, a valid sequence is determined by two
parameters. The target pruning ratio 0 < p < 1,
and the index of the layer after which we stop re-
ducing the sequence length 1 ≤ iprune-upto ≤ L.
The sequence lengths are defined as

lj =

⌈
N · p

min(j,iprune-upto)
iprune-upto

⌉
, j = 0, 1, · · · , L, (5)

where j = 0 corresponds to the input layer. We
found that this strategy provides a good balance be-
tween the need to reduce the length quickly while
retaining information. It involves hyperparame-
ter tuning with two HPs: p, iprune-upto, and allows
for an efficient training procedure. In Appendix B
we provide a study comparing this restriction to
possible alternatives showing its advantages. In
addition we discuss how it compares to recent ap-
proaches (Goyal et al., 2020; Ye et al., 2021).

6 Experiments

We plug-in our core-set based token selection
method and the other competitive methods into
encoder layers of a backbone Transformer, and
after fine-tuning evaluate their performance on
a wide range of natural language classification
tasks. Specifically, we conduct the evaluations
on two popular benchmarks: (1) the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018), and (2) the Long Rang
Arena (LRA), a collection of challenging long
range context tasks (Tay et al., 2020). For the

backbone Transformer, we choose BERTBase (De-
vlin et al., 2018) for the GLUE benchmarks, and
two state-of-the-art long-text Transformers Big
Bird (Zaheer et al., 2020) and Performers (Choro-
manski et al., 2020) for the LRA. For dataset statis-
tics such as the number of classes and input se-
quence length, and the details of the backbone
Transformers, see Appendix C.

For sequence-length configurations, we generate
a set F of 30 sequence-length configurations using
Equation 5, the details of which are listed in Ta-
ble 9 Appendix C. The high level idea is to cover
multiple tradeoffs between efficiency and accuracy.

For each token selection method, we show the
predictive performance for 1.5X , 2X , 3X , and
3.5X speedup. Similarly, we show the predictive
performance for 30% and 70% space complexity
reductions of the attention layer. The reason we
consider the space reduction for the attention layer
alone is that its quadratic complexity serves the
main bottleneck for long sequences. For details on
how to get the performance at different speedup
and mathematical formula for computing speedup
and space complexity reduction, see Appendix C.

6.1 Baseline Methods

We compare our method with following five meth-
ods: (1) Attention-select (Att): An attention based
mechanism from Goyal et al. (2020). (2) Average-
pool (Pool): A strided mean pooling applied to
each sliding window of the sequence (Dai et al.,
2020).(3) First-k-select (1st): Selects the first k
tokens, a strategy often considered with long doc-
uments. (4) Input-first-k-select (1st-I): Selects the
first k tokens, but rather than gradually reducing the
sequence length in the encoder layers, performs a
single truncation directly on the input. (5) Random-
select (Rand): Selects a random subset of tokens.
For all of the methods (including ours), the CLS
token is always retained during the token selection.

For our core-set based token se-
lection, we try 6 values of m ∈
{1, d0.1ke, d0.2ke, d0.3ke, d0.4ke, (k − 1)}
where k = lj , for j = 1, 2, · · · , L. In particular,
m = k− 1 selects all k− 1 tokens (centers) in one
iteration given the first selected token is always the
CLS token. And m = 1 selects one token (center)
per iteration which corresponds to the most
fine-grained but also the slowest token selection
strategy. We denote the strategy of m = k − 1
as Coreset-select-k-1 (CS-k-1), and the others as
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Coreset-select-x where x ∈ {1, 0.1, 0.2, 0.3, 0.4}.
We use Coreset-select-opt (CS-opt) to represent
the best value from the Coreset-select-k-1 and
Coreset-select-x. In what follows, in tables
presenting results we refer to the methods by their
shortened (bold) names.

6.2 Implementation
To fairly evaluate our method against the baselines,
we use the same set of hyperparameters for all the
methods, for a given dataset. For details, see Ap-
pendix D. The code for Pyramid-BERT is made
available as a supplementary material with the sub-
mission. The training and inference jobs are run
separately on a NVIDIA Tesla V100 GPU machine
and a Intel Xeon Platinum 8000 series CPU ma-
chine respectively. All the accuracy and speedup
scores are averaged over 20 trials.

6.3 Results on GLUE benchmarks
We first examine the trade-off between accuracy
and speedup. The accuracy results for 3X and
1.5X speedup are summarized in Table 1 and 2
respectively. The results for 3.5X and 2X speedup
are given in the Table 11 and 13 in Appendix E.
We observe that as the speedup increases the
gap between our Coreset-select-opt and its com-
petitors becomes large, where for 3X speedup,
Coreset-select-opt outperforms the second best
method Attention-select by 1% accuracy in average
and beats the standard baselines by 2% or more.
The Average-pool performs the worst in average
across the GLUE benchmarks, specially on the
COLA dataset. For detailed justification, see Ap-
pendix E. To better understand the performance
of Coreset-select-opt with different values of m,
an ablation study is shown in Section 7. For mild
speedup of 1.5X , we note that all methods (except
Average-pool) suffer only a small loss in accuracy
and our method suffers no loss. A similar situation
occurs when viewing the tradeoff between space
complexity and accuracy, where we provide results
for a memory reduction of 70% and 30% in the
Tables 3 and 16 (in § E).

6.4 Results on Long Range Arena
We show results on the following three datasets of
LRA benchmark: (1) byte-level text classification
using real-world data (IMDB), (2) Pathfinder task
(long range spatial dependency problem), and (3)
image classification on sequences of pixels con-
verted from CIFAR-10.

Dataset 1st-I 1st Rand Pool Att CS-k-1 CS-opt BERTBase

STS-B 86.4 86.4 86.8 81.6 87.0 87.0 87.0 87.9
MRPC 81.4 80.9 83.2 83.9 84.6 86.2 86.9 87.3
SST-2 83.8 84.4 85.6 85.2 86.0 87.3 89.6 92.4
QNLI 84.8 84.4 86.4 84.1 86.8 87.8 87.8 90.9
COLA 49.7 49.7 49.5 3.0 51.1 51.7 52.8 53.3
RTE 63.5 63.5 62.1 59.2 63.4 63.7 63.7 65.8
MNLI_M 77.8 76.7 81.4 75.4 82.5 82.4 82.5 84.0
MNLI_MM 75.9 75.6 78.7 76.7 82.7 82.6 82.7 84.6
QQP 80.8 80.4 87.0 79.4 87.3 87.3 87.3 87.5

Mean 76.0 76.1 77.9 69.6 79.0 79.6 80.0 81.5

Table 1: GLUE dev performance at 3X speedup. Here and
everywhere else, F1 scores are reported for QQP and MRPC,
Spearman correlations are reported for STS-B, Matthew’s
correlations are reported for COLA, and accuracy scores are
reported for the other tasks. Each value is averaged over 20
trials. Larger values indicates better performance.

Dataset 1st-I 1st Rand Pool Att CS-k-1 CS-opt BERTBase

STS-B 87.9 87.9 87.8 87.8 87.9 87.7 87.9 87.9
MRPC 86.8 86.4 87.2 87.0 87.1 86.9 87.3 87.3
SST-2 92.1 91.5 91.9 90.3 92.3 92.4 92.4 92.4
QNLI 90.8 90.8 90.8 90.2 90.7 90.9 90.9 90.9
COLA 53.0 52.7 53.1 25.6 53.2 53.3 53.3 53.3
RTE 65.6 65.2 65.7 61.5 65.7 65.4 65.6 65.8
MNLI_M 84.0 83.8 83.9 80.9 84.0 84.0 84.0 84.0
MNLI_MM 84.1 84.0 83.9 84.0 84.5 84.6 84.6 84.6
QQP 87.1 86.9 87.4 85.7 87.4 87.5 87.5 87.5

Mean 81.3 81.0 81.3 76.8 81.4 81.4 81.5 81.5

Table 2: GLUE dev performance at 1.5X speedup.

For baselines, we include First-k-select and
Random-select methods, but fail to include
Attention-select. Attention-select requires a full
attention matrix for selecting tokens which is not
available in Big Bird (Zaheer et al., 2020) and Per-
formers (Choromanski et al., 2020). In addition,
the Transformers including Big Bird and Perform-
ers in LRA have shallow architectures because of
no pre-training: the default number of encoders for
text classification, path finder, and image classifi-
cation datasets are four, four, and one, respectively.
Thus, for both baselines and our method, we only
reduce sequence length in the input layer, which
is before the first encoder. For the sequence-length
configurations, see Appendix C.2. For Average-
pool, due to its worst performance on the GLUE
benchmarks and the shallow architectures of the
models in LRA, we exclude it from the baselines.

Dataset 1st-I 1st Rand Pool Att CS-k-1 CS-opt BERTBase

STS-B 85.3 85.1 85.6 78.7 85.4 86.5 86.7 87.9
MRPC 81.3 81.5 83.3 83.1 84.3 86.0 86.6 87.3
SST-2 83.3 84.6 84.9 85.1 87.2 87.6 87.7 92.4
QNLI 84.6 84.3 85.1 84.0 86.4 86.6 86.5 90.9
COLA 49.0 49.0 48.4 0.0 50.9 51.0 52.3 53.3
RTE 62.1 62.0 61.8 59.8 62.7 63.6 63.6 65.8
MNLI_M 76.9 76.3 79.0 75.2 80.5 80.9 81.0 84.0
MNLI_MM 74.9 74.5 79.3 76.3 80.7 81.6 81.8 84.6
QQP 80.6 80.0 86.6 82.9 87.0 87.2 87.3 87.5

Mean 75.3 75.3 77.1 69.5 78.3 79.0 79.3 81.5

Table 3: GLUE dev performance at 70% space complexity
reduction.
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Big Bird

Dataset 1st Rand CS-k-1 CS-opt Trans.-no-prune

CIFAR-10 26.9 39.4 38.6 43.3 40.9
PATHFINDER-32 55.6 69.9 69.3 71.7 73.5
IMDB (BYTE-LEVEL) 57.9 59.6 59.1 61.4 63.8

Mean 46.8 56.3 55.7 58.8 59.4

Performers

CIFAR-10 26.9 41.5 39.8 45.5 42.9
PATHFINDER-32 52.4 58.2 61.5 67.7 66.2
IMDB (BYTE-LEVEL) 59.9 59.9 59.7 62.8 64.3

Mean 46.4 53.2 53.7 58.7 57.8

Table 4: LRA test set performances at 70% space complexity
reduction for Big Bird (top) and Performers (bottom) as the
backbone Transformer. Here and everywhere else, accuracy
scores are reported for all three tasks. Each value is averaged
over 20 trials. Larger values indicates better performance.

The results of accuracy scores for space com-
plexity reduction at 70% and 30% are presented
in Table 4 and Table 18 (in Appendix E), re-
spectively. The Coreset-select-opt here repre-
sents the Coreset-select with m = 1 because
of its superior performance over other m ∈
{d0.1ke}, d0.2ke, d0.3ke, d0.4ke}.

We observe a similar pattern as discussed in
GLUE benchmark evaluations: at high space com-
plexity reduction 70%, Coreset-select-opt signif-
icantly outperforms its competitors First-k-select
and Random-select by 12% and 2.5% in average
for Big Bird (12.3% and 5.5% in average for Per-
formers). Moreover, on CIFAR-10, our Coreset-
select-opt is even better than the Big Bird and
Performers without any sequence reduction with
accuracy gain 2.4% and 2.6%, respectively (simi-
larly for Performers on PATHFINDER-32). On the
other hand, different from the GLUE evaluations,
Coreset-select-k-1 does not show any significant ad-
vantages over the baseline methods. Our conjecture
is that the input in the LRA datasets contain too
many noisy or low level information which is not
helpful for predicting the target. For an example,
each pixel of an image (CIFAR-10) or a character
in the byte-level text classification represents a to-
ken as the input. Our Coreset-select based strategy
with m = 1 does the most fine-grained token-level
selection than its baselines and thus filter out the
noisy information. Note, we do not include accu-
racy and speedup tables because of insignificant
gains observed in speedup due to the shallow archi-
tectures of Transformers in LRA.

7 Ablation Studies

We conduct four ablation studies to better study
pyramid-BERT: (1) Performance comparisons for

MNLI_M

Seq.len.config. CS-1 CS-0.5 CS-k-1

iprune-upto p Acc. Speedup Acc. Speedup Acc. Speedup

1 1.5 78.3 2.5X 77.9 2.9X 77.9 3.6X
2 0.2 81.0 1.9X 80.7 2.3X 80.6 2.6X
3 0.3 82.9 1.7X 82.8 1.9X 82.8 2.1X
4 0.4 83.6 1.7X 83.5 1.7X 83.4 1.8X

BERTBase 84.0 – 84.0 – 84.0 –

MNLI_MM

1 1.5 79.2 2.4X 78.3 2.9X 77.9 2.9X
2 0.2 81.5 1.7X 81.3 2.2X 81.2 2.2X
3 0.3 83.5 1.2X 83.4 1.7X 83.1 1.7X
4 0.4 84.0 1.1X 84.1 1.4X 84.0 1.4X

BERTBase 84.6 – 84.6 – 84.6 –

Table 5: dev set performance comparisons for Coreset-
select with m ∈ {1, d0.5ke, k − 1}. A fixed set of four
sequence-length configurations are specified based on
iprune-upto and p.

Coreset-select with different values of m, the num-
ber of centers to add per iteration. (2) Justification
on the token importance measured by the Coreset-
select. (3) Comparison of applying Coreset-select
at both fine-tuning and inference versus at only
inference to justify the necessity of fine-tuning in
selecting tokens. (4) Exploring the position to plug-
in the Coreset-select in the encoder.

The result for the first ablation study is presented
in Table 5 We can see that Coreset-select withm =
1 gives the best performance but with the smallest
speedup for MNLI-M/MM datasets.

Next, we conduct a study to validate the impor-
tance of tokens measured by our Coreset-select
strategy. We consider a trained BERT that has
been fine-tuned on a downstream dataset without
any sequence length reduction. During inference,
given a encoder j and input example consist of a
sequence of tokens, we eliminate the k-th most im-
portant token measured by the core-set selection
method with 1 ≤ k ≤ L, and obtain a classification
output (prediction label). The classification out-
puts for all input examples are then compared with
those generated by BERT without any sequence
length reduction. The comparison between the two
classification outputs is measured by the mutual
information (Shannon, 2001). Larger mutual in-
formation indicates more similarity between the
two classification outputs. The importance score is
specifically the order of tokens (centers) added by
the core-set selection method. For a batch of size
m tokens that are added at the same time, their im-
portance is determined by the maximum distance
between the token and its nearest centers that have
already been added. The expectation is that the
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Figure 4: Demonstration of token importance mea-
sured by the Coreset-select-1 based token selection
method on SST-2 dev set.

Figure 5: Demonstration of token importance mea-
sured by the Coreset-select-k-1 based token selection
method on SST-2 dev set.

importance of tokens is negatively correlated with
the corresponded mutual information. For an ex-
ample, reducing the least important token for each
input example should make the classification out-
puts have the least difference from those generated
without reducing any token, and thus result in the
largest mutual information.

A result on SST-2 dataset is presented in Fig-
ure 4. The input sequence length L is set as 64, and
thus k ∈ [1, 64]. The encoder index j takes value
{1, 3, 6, 9}. Since the target variable of SST-2 is a
relatively balanced binary value, the largest mutual
information, which corresponds to no difference
between the classification outputs, is ln(2) ≈ 0.69.
For the token selection method, we choose Coreset-
select with m = 1. The pattern shown in the figure
aligns with our expectation that the importance
of tokens is negatively correlated with the mutual
information. Same pattern is observed for Coreset-
select-k-1. See Figure 5.

Next, we study the difference between applying
Coreset-select at both fine-tuning and inference,
and at only inference. Table 6 justifies the neces-
sary of fine-tuning in sequence length reduction.

Only Infer Fine-tune & Infer

QNLI 68.2 85.9
SST-2 81.5 87.2
COLA 47.9 50.5
MRPC 83.5 85.8
STS-B 84.6 86.5
MNLI-M 75.0 80.6
MNLI-MM 74.8 81.4

Table 6: Comparison of token selection at inference
only versus at both fine-tuning and inference. The par-
ticular sequence-length configuration is generated us-
ing Equation 5 with iprune-upto as 3, p as 0.2, and the
input sequence length N is 128.

Middle End

MRPC 85.8 84.0
RTE 63.4 60.4
MNLI-M 80.7 79.9
MNLI-MM 81.4 80.1

Table 7: Comparison between placing the Coreset-
select method in the middle (right after the attention
layer) and at the end of the encoder layer. The partic-
ular sequence-length configuration is generated using
Equation 5 with iprune-upto as 3, p as 0.2, and the input
sequence length N as 128.

Finally, we study the position to insert the
Coreset-select method in the encoder. Two choices
of position have been considered. The first option
is to plug-in the token selection method right after
the attention layer and before the feed-forward net-
work, and the second option is to place it at the end
of the encoder. The results is shown in Table 7. The
experiment shows that placing the token selection
method right after the attention layer gives better
performance than placing it at the end of encoder.

8 Conclusion

We provide pyramid-BERT, a theoretically justified
technique for sequence length reduction, achiev-
ing speedup and memory reduction for both train-
ing and inference of transformers, while incurring
significantly less accuracy drop than competitive
methods. However, this technique can be applied
only for classification and ranking tasks which use
single embedding from the top layer for prediction.
Also, our token selection approach requires fine-
tuning the network. An interesting future study
would be to eliminate the need of fine-tuning.
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A Appendix: Theory

A.1 Difference between the Theoretical and
Practical Algorithm

There are two main aspects in which our practical
implementation of pyramid BERT token selection
differ from its theoretical one, for which we have
provided guarantees in Theorem 1. Below we ex-
plain the differences and justify them.

1. In the theoretical implementation of pyramid
BERT token selection, for which we have
provided guarantees in Theorem 1, the origi-
nal BERT parameters, w, are kept fixed, and
the self-attention is weighted according to the
duplicity of the tokens in the corresponding
pyramid∗ BERT. Whereas in the practical im-
plementation we remove the weighing of self-
attention and offset it by fine-tuning the orig-
inal BERT parameters w. We make this de-
viation as we found that fine-tuning BERT
not only obviates the need of weighing self-
attention but also reduces the performance
degradation incurred due to token selection.
We note that it is intractable to analyze this
deviation in theory as BERT fine-tuning is a
non-convex optimization.

2. In the theoretical implementation of pyramid
BERT, a δ-cover core-set of tokens is selected.
The δ-cover core-set token selection is equiva-
lent to the k-Center problem. The theoretical
guarantees assume that we can get the optimal
solution of the k-Center problem. However,
the k-Center problem is NP-hard and a best
known algorithm of it k-Center-greedy gives
a 2 × OPT solution. In our practical imple-
mentation, we go a step beyond the greedy
approach and propose a parallelizable version
of the k-Center-greedy algorithm that takes in
an additional hyper-parameter m. The hyper-
parameter m sets the level of parallelization
and the choice of m = 1 reduces it to the
original k-Center-greedy. In the numerical
experiments, we report the accuracy for the
best pyramid BERT by optimizing over the
hyper-parameter m.

We note that despite the above mentioned differ-
ences of our practical algorithm from the theoreti-
cal one, the theoretical guarantees achieved in The-
orem 1 do justify the approach of core-set based

token selection. The theorem establishes that the to-
ken selection loss of the pyramid BERT is bounded
by the δ-cover of the core-set. Informally, if the
input sentence comprises near-duplicate tokens, in
pyramid BERT, the loss incurred by the token se-
lection method goes to zero.

A.2 Proof of Theorem 1

On a high level, theorem follows from (1) the def-
inition of Lipschitz continuity, (2) the definition
of the token selection algorithm T ∗ of pyramid∗

BERT, and (3) the fact that the loss function Lw
comprises a sequence of encoder layers stacked on
top of each other.

We introduce two new notations. Let Oj denote
the BERT model up to the output of the j-th en-
coder, and Ej denote the BERT network up to the
input of the j-th encoder. We assume that the token
selection algorithm T ∗ operates on the embeddings
before they are inputted to the encoder. Also, for
ease of notation we omit the subscript i denoting
the i-th training example from (xi, yi).

Based on the above notations, for BERT we have
Ej(x, y) = Oj−1(x, y). For pyramid∗ BERT, due
to the token selection algorithm T ∗, for each j-th
encoder layer, we have,∥∥∥∥Ej(x, y, S̃∗,S∗)−Oj−1(x, y, S̃∗,S∗)

∥∥∥∥
≤ δ(N − `j) . (6)

The above equation uses the fact that at most
(N − `j) tokens are replaced with their correspond-
ing core-set center token, which is at most δ away
from them. The Equation (7) follows immediately
from the definition of Lipschitz continuity of the
classification layer.∣∣∣L(x, y)− L(x, y, S̃∗,S∗)∣∣∣
≤ λC

∥∥∥OL(x, y)−OL(x, y, S̃∗,S∗)
∥∥∥ . (7)

The Equation (8) follows from the Lipschitz con-
tinuity of the L-th encoder. The Equation (9) fol-
lows from Equation (6). The Equation (10) fol-
lows from the repeated application of Equation (9)
over the next encoder layer. The Equation (11) fol-
lows from the repeated application of Equation (9)
over the subsequent encoder layers, and the fact
that O0(x, y) = O0(x, y, S̃∗,S∗), as input to the
first encoder layer is same for BERT and pyramid∗

BERT.
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∥∥∥OL(x, y)−OL(x, y, S̃∗,S∗)
∥∥∥

≤ λL
∥∥∥EL(x, y)− EL(x, y, S̃∗,S∗)∥∥∥ (8)

≤ λLδ(N − `L)

+ λL

∥∥∥OL−1(x, y)−OL−1(x, y, S̃∗,S∗)
∥∥∥ (9)

≤ λLδ(N − `L) + λLλL−1δ(N − `L−1)

+ λLλL−1

∥∥∥OL−2(x, y)−OL−2(x, y, S̃∗,S∗)
∥∥∥

(10)

≤ λLδ(N − `L) + λLλL−1δ(N − `L−1)

+ · · ·+
( L−1∏

j=0

λL−j

)
δ(N − `1) (11)

= δ

L∑
j=1

(
(N − `j)

L∏
i=j

λi

)
. (12)

The theorem follows by combining Equations (7)
and (12).

B Appendix: Evaluation on the
Sequence-length Generation Function

We note that most recent approaches such as (Goyal
et al., 2020; Ye et al., 2021) try to learn a task-
dependent sequence-length configuration with a
cost of fine-tuning more than twice on the down-
stream data, where the first fine-tuning trains a full
model without any sequence-length reduction, with
additional parameters that often requires delicate
tuning. This approach does not help the training
process and in fact increase its cost whereas our
goal is to improve the training procedure. Further-
more, there is still an amount of HP tuning involved
in order to find the right ratio of acceleration (or
memory reduction) to accuracy. Our technique in-
volves hyperparameter tuning but with two HPs:
p, iprune-upto, and allows for an efficient training pro-
cedure.

We conduct an experiment to validate the
sequence-length generation function, in compar-
ison to a random method that gives configurations
for all encoders. Given a dataset we use the re-
tention generation function in Equation 5 and ran-
dom method to generate a fix number of sequence-
length configurations, separately. Then we apply
the same core-set based method on the dataset with
each sequence-length configuration and compute
the statistics of accuracy and speedup for our and
random method. We repeat the random method

DATASET # CLASSES INPUT SEQUENCE LENGTH (N )

STS-B – 128
MRPC 2 128
SST-2 2 64
QNLI 2 128
COLA 2 64
RTE 2 256
MNLI-M 3 128
MNLI-MM 3 128
QQP 2 128

CIFAR10 10 1024
PATHFINDER32 2 1024
IMDB (BYTE-LEVEL) 2 1000

Table 8: Dataset statistics for GLUE and LRA bench-
marks. STS-B is a regression task and thus does not
have classes.

for three times. The number of sequence-length
configurations is set as 30, and details of those
generated by the Equation 5 is presented in Ta-
ble 9 in Appendix C.1. The results for SST-2
dataset are shown in Figure 6. We can see that
the sequence-length configurations generated by
our method provide wider searching range of ac-
curacy and speedups than those generated by the
random method.

Figure 6: MRPC: Scatter plots of accuracy versus
speedup for 30 sequence-length configurations gener-
ated by our and random method. Each solid line is from
a linear regression model fitted on the scatter points of
the corresponded method.

C Appendix: Experiments Setup

Data statistics such as the number of classes and
input sequence length are specified in Table 8.

The details of the backbone Transformer used in
GLUE(Wang et al., 2018) and LRA (Tay et al.,
2020) are presented as follows: For BERTBase,
it was pre-trained on the BooksCorpus and En-
glish Wikipedia with L = 12 encoders, A = 12
self-attention heads per encoder and hidden size
H = 768. For Big Bird (Zaheer et al., 2020) and
Performers (Choromanski et al., 2020), we follow
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the original implementation in LRA (Tay et al.,
2020) that models are fine-tuned from scratched on
each task without any pre-training.

C.1 GLUE Benchmarks

For experiments on GLUE benchmarks, the
sequence-length configurations F generated by
Equation 5 are presented in Table 9. For each
dataset and Transformer model with a token se-
lection method, the same set of sequence-length
configurations are used.

For each sequence-length configuration in F a
Transformer with a token selection method is ap-
plied at both fine-tuning and inference. Next, for
each token selection method we select the accuracy
scores when there are speedup 1.5X , 2X , 3X , and
3.5X over the Transformers without any sequence
reduction. To get the accuracy score at the exact
speedup X , a linear interpolation is used when nec-
essary. However, for objective evaluation we do
not extrapolate the results. For details on how to
get accuracy scores at different speedup number,
see Figure 8 and 9 in Appendix E. Similarly, we
select the accuracy scores when the space complex-
ity reductions for the attention layer are 30% and
70%. The reason why we only focus the space re-
duction for the attention layer is that its quadratic
complexity serves the main efficiency bottleneck
for Transformers.

For Input-first-k-select, since it does not rely on
F but different truncated input sequence lengths,
we specify its configuration as following: For
dataest with N = 256, we try truncated sequence
lengths of {240, 224, · · · , 48, 32, 16}. For dataset
with N = 120, we try truncated sequence lengths
of {112, 96, 80, 64, 48, 32, 16, 8}. And for dataset
with N = 64, we try truncated sequence lengths of
{48, 32, 16, 8, 4}.

Similarly, Average-pool does not rely on F but
the window size and encoder layer(s) to apply the
pooling. To get the accuracy scores at various
speedups, we try the average pooling with different
window sizes of {2, 3, 4, 5, 6} on various encoder
layer(s). The window size is set equal to the stride
size.

The mathematical formulas for speedup and
space complexity reduction are presented as
below. Consider BERTBase as the backbone
Transformer for an example, and denote the
BERTBase with a token selection method as
BERTToken-select. The speedup is computed as

T (BERTBase) / T (BERTToken-select), where T (·) is
the time duration in inference. Larger value indi-
cates higher inference speedup for BERTToken-select
over BERTBase. The space complexity reduc-
tion for the attention layer is computed as 1 −
S(BERTToken-select) / S(BERTBase), where S(·) =∑L

j=1 l
2
j + ljd, j = 1, 2, · · · , L, and lj and d de-

notes the number of tokens to select at encoder j
and the hidden dimension (dimension of the la-
tent representation), respectively. Larger value
indicates higher space complexity reduction for
BERTToken-select over BERTBase. For simplicity, the
“space complexity reduction" refers to the reduction
for the attention layer in the following discussion.

C.2 LRA

We run a set of sequence-length configurations
where the number of tokens to select on the in-
put layer is {d0.1 ·Ne, d0.2 ·Ne, · · · , d0.9 ·Ne}
and N is the input sequence length. The Coreset-
select-opt here represents the core-set token se-
lection method with m = 1 because we observe
it gives the best performance than m ∈ {d0.1 ·
ke}, d0.2 · ke, d0.3 · ke, d0.4 · ke}. The results of
accuracy scores for space complexity reduction at
70% and 30% are presented in Table 4 and 18, re-
spectively. We observe a similar pattern as shown
in Section 6.3: at high space complexity reduc-
tion 70% in Table 4, Coreset-select-opt signifi-
cantly outperforms its competitors First-k-select
and Random-select by 12% and 2.5% in average
for Big Bird (12.3% and 5.5% in average for Per-
formers). Moreover, on CIFAR-10, our Coreset-
select-opt is even better than the Big Bird and Per-
formers without any token selection with accuracy
gain 2.4% and 2.6%, respectively. Similarly on
PATHFINDER-32, the Coreset-select-opt shows
1.5% accuracy gain over the Performers without
any token selection. On the other hand, different
from Section 6.3, Coreset-select-k-1 does not show
any significant advantages over the baseline meth-
ods. Our conjecture is that the input in the LRA
tasks contain too many noisy or low level informa-
tion which is not helpful for predicting the target.
For an example, each pixel of an image (CIFAR-10)
or a character in the byte-level text classification
represents a token in the input for the Transformer.
Our core-set based strategy, especially with m = 1,
does the most fine-grained token-level selection
than its baselines and thus filter out the noisy infor-
mation. At low space complexity reduction 30%
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Input Output: Retention configurations – Number of tokens to retain at each encoder layer

The last layer
index to apply
token selection
iprune-upto

The proportion of
input tokens p
to retain at iprune-upto

layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12

2 0.15 49 19 19 19 19 19 19 19 19 19 19 19
3 0.15 68 36 19 19 19 19 19 19 19 19 19 19
4 0.15 79 49 30 19 19 19 19 19 19 19 19 19
3 0.10 59 27 12 12 12 12 12 12 12 12 12 12
4 0.10 71 40 22 12 12 12 12 12 12 12 12 12
3 0.20 74 43 25 25 25 25 25 25 25 25 25 25
4 0.20 85 57 38 25 25 25 25 25 25 25 25 25
3 0.17 70 39 21 21 21 21 21 21 21 21 21 21
3 0.18 72 40 23 23 23 23 23 23 23 23 23 23
3 0.19 73 42 24 24 24 24 24 24 24 24 24 24
3 0.22 77 46 28 28 28 28 28 28 28 28 28 28
3 0.25 80 50 32 32 32 32 32 32 32 32 32 32
1 0.25 32 32 32 32 32 32 32 32 32 32 32 32
2 0.25 64 32 32 32 32 32 32 32 32 32 32 32
3 0.25 80 50 32 32 32 32 32 32 32 32 32 32
5 0.25 97 73 55 42 32 32 32 32 32 32 32 32
9 0.25 109 94 80 69 59 50 43 37 32 32 32 32
11 0.25 112 99 87 77 68 60 52 46 41 36 32 32
1 0.50 64 64 64 64 64 64 64 64 64 64 64 64
2 0.50 90 64 64 64 64 64 64 64 64 64 64 64
3 0.50 101 80 64 64 64 64 64 64 64 64 64 64
5 0.50 111 97 84 73 64 64 64 64 64 64 64 64
9 0.50 118 109 101 94 87 80 74 69 64 64 64 64
11 0.50 120 112 105 99 93 87 82 77 72 68 64 64
1 0.75 96 96 96 96 96 96 96 96 96 96 96 96
2 0.75 110 96 96 96 96 96 96 96 96 96 96 96
3 0.75 116 105 96 96 96 96 96 96 96 96 96 96
7 0.75 122 117 113 108 104 100 96 96 96 96 96 96
9 0.75 123 120 116 112 109 105 102 99 96 96 96 96
11 0.75 124 121 118 115 112 109 106 103 101 98 96 96

Table 9: Sequence-length configurations F for experiments on GLUE benchmarks. Each sequence-length config-
uration is determinied by the configuration generation function (Equation 5) which requires two hyperparameters
“the last layer index to apply token selection iprune-upto" and “the proportion of input tokens p to retain at lprune-upto".
The input sequence N is set as 128.

in Table 18, the advantages for Coreset-select-opt
over its baselines becomes smaller, which matches
our expectations in the mild sequence-length re-
duction regime. Note, we do not include accuracy
and speedup tables because of insignificant gains
observed in speedup due to the shallow architec-
tures of Transformers in LRA and the usage of the
slowest coreset based method with m = 1.

D Appendix: Hyperparameters

To fairly evaluate our method, we do not tune
any hyperparameters for both GLUE and LRA
benchmarks, i.e., the same set of hyperparameters
are used for each dataset across every competing
method. For GLUE benchmarks, the learning rate
and number of epochs are set as 2e−5 and 3, re-
spectively. The batch size in training is set as 48
for all except MNLI-M/mm and RTE, which are
set as 32 and 16, respectively. The batch size in
inference is uniformly set as 128. For LRA (Tay
et al., 2020), we follow the exact settings for the
task-specific hyperparameters and models config-
urations provided in its official github repository,
except reducing the number of encoders in the back-
bone Transformer (Zaheer et al., 2020; Choroman-

ski et al., 2020) for certain tasks to allow more effi-
cient learning. The details of the hyperparameters
and model configurations are presented in Table 10.
Note, the learning rate, number of epochs, batch
size are all consistent with the default settings in
LRA for both Big Birds (Zaheer et al., 2020) and
Performers (Choromanski et al., 2020). For the rest
of model configurations, see (Tay et al., 2020).

E Appendix: Experimental Results

First, the GLUE dev performance at 3.5X ,
3X , 2X , and 1.5X speedup are shown in Ta-
ble 11, 12, 13, and 14. The same conclusion as
discussed in Section 6.3 is reached. Similarly, the
GLUE dev performance at 70% and 30% space
complexity reduction are presented in the Table 15
and 16. In particular, the baseline Average-pool
performs the worst in average across the GLUE
benchmarks. This aligns with the proposed method
from Dai et al. (2020) that a pre-training step is
necessary to make the simple pooling method per-
form competitive. Especially for COLA dataset,
Average-pool shows the matthews correlation co-
efficients at most 25.6 when the speedup is higher
than 1.5X . At 30% space reduction in Table 16, the
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Big Bird Performers

Hyperparameters Cifar 10 Path Finder 32 Text Classification Cifar 10 Path Finder 32 Text Classification

Learning Rate 5e−4 5e−4 2.5e−2 5e−4 3e−4 2.5e−2

# of Epoch 200 200 625 200 200 625
Train & Infer Batch Size 256 512 32 256 512 32

# of Layers 1 4 1 1 4 1
# of Heads 4 2 4 8 8 4
Embedding Dimension 128 64 256 128 32 256
Query/Key/Value Dimension 64 32 256 64 16 256
Feedforward Network Dimension 128 64 1024 128 32 1024
Block Size (specific to Big Birds) 8 8 64 – – –

Table 10: LRA hyperparameters and model configurations for Big Bird (left) and Performers (right). Note. The
learning rate, number of epoch, and the batch size are all consistent with default settings in LRA (Tay et al., 2020).
For the rest of model configurations, please see (Tay et al., 2020).

pooling method shows a relatively high matthews
correlation coefficient of 44.6, which is still the
worst among all the other methods. We conjecture
that the poor performance comes from the follow-
ing reasons: (1) The pooling method, when applied
at a encoder, significantly reduces the sequence
length at least by half (as the least sliding win-
dow size is 2). Additionally, the COLA dataset
has the shortest sequence length in average in the
GLUE benchmarks, making the reduced sequence
length from the pooling even shorter. This fails the
model to learn any useful pattern from the data. For
the sequence length distributions of GLUE bench-
marks, see Figure 7. (2) The reason the pooling
method shows a relatively high matthews corre-
lation coefficient at 30% space reduction in Ta-
ble 16 is that the pruning scenario corresponds to
a “mild" one where the pooling is applied near the
top encoder layer (after 8th encoder) and the cor-
responded speedup is significantly less than 1.5X .
We also observed that the SST-2, which has the
second shortest sequence length in average in the
GLUE benchmarks, does not suffer similarly as
the COLA for the pooling method. We conjecture
that this is due to the task of sentiment analysis
for SST-2 is much easier than that of judging the
grammatical correctness of a sentence for COLA.
In summary, the Average-pool method merges the
consecutive tokens together, according to the win-
dow length. However, in English text usually it is
not the case that the consecutive tokens are similar
and can be merged into one without significant loss
in information.

Second, we demonstrate how to generate the
accuracy and inference speedup table as shown
in Table 1, 2, 11, and 13. A demonstration for
dataset SST-2 and MRPC are presented in Fig-
ure 8 and 9, respectively. Specifically, for each

Figure 7: Sequence length distributions of GLUE
benchmarks. For each dataset, the triangle mark and
solid line represent the mean and median, respectively.

sequence-length configuration shown in Table 9,
we fine-tune a Transformer model with a token se-
lection method on a GLUE train set. Then we com-
pute accuracy score and inference speedup num-
ber on its dev set. A scatter plot of accuracy vs.
speedup is made where each point corresponds
to a sequence-length configuration. Next, among
the scatter plot we find a pareto curve where ac-
curacy scores at speedup 1.5X , 2X , 3X , 3.5X
are obtained. A linear interpolation is applied
based on the pareto curve when necessary. How-
ever, we do not extrapolate the results for objec-
tive evaluation purpose. For Coreset-select-opt,
given a sequence-length configuration we choose
the model that has the best accuracy score for
m ∈ {d0.1 · ke, d0.2 · ke, d0.3 · ke, d0.4 · ke}.

Third, for LRA, the results of accuracy scores
for space complexity reduction at 70% and 30%
are presented in Table 17 and 18. At low
space complexity reduction 30%, the advantages
for Coreset-select-opt over its baselines becomes
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smaller, which matches our expectations in the mild
sequence-length reduction regime.

F Appendix: Experimental Details for
Figure 1 in Section 3

A preliminary study of token embeddings show that
as the embeddings propagate through the pipeline
of encoders, they become more and more similar
to the CLS token, Figure 1 (top row). A deeper
investigation shows that they also become more
and more similar with each other and form clusters
among themselves, Figure 1 (bottom row).

To obtain Figure 1, we examine token embed-
dings of the SST-2 dev set after fine-tuning a
BERTBase on its train set. For Figure 1 (top row),
we compute the histogram of cosine similarity be-
tween the embedding of CLS and that of all the
other tokens in encoder 1, 6, and 12, respectively.
For Figure 1 (bottom row), we apply DBSCAN (Es-
ter et al., 1996) to cluster the embeddings of tokens
in encoder 1, 6, and 12 respectively. For the hyper-
parameters of DBSCAN, the maximum distance ε
of two points in a cluster, the minimum number of
points required to form a cluster are set as 0.2 and
1. The distance metric is cosine dissimilarity.
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METHOD STS-B MRPC SST-2 QNLI COLA RTE MNLI_M MNLI_MM QQP MEAN

Input-First-K-Select 80.6± 0.2 – – 80.5± 0.1 47.9± 0.5 – 75.9± 0.1 74.5± 0.1 – 71.9
First-K-Select 80.3± 0.2 – – 80.8± 0.1 47.9± 0.5 – 75.5± 0.1 74.7± 0.1 – 71.8
Random-Select 85.7± 0.2 – – 86.2± 0.1 48.9± 0.5 – 80.2± 0.1 78.1± 0.1 – 75.8
Average-Pool 77.6± 0.1 – – 84.0± 0.1 0.0± 0.0 – 73.3± 0.1 74.7± 0.0 – 61.9
Attention-Select 85.3± 0.1 – – 86.7± 0.1 51.0± 0.4 – 81.1± 0.1 81.4± 0.1 – 77.1
Coreset-Select-CLS (ours) 86.6± 0.1 – – 87.5± 0.1 51.1± 0.3 – 82.2± 0.1 82.4± 0.1 – 77.9
Coreset-Select-Opt (ours) 86.6± 0.1 – – 87.5± 0.1 52.7± 0.3 – 82.2± 0.1 82.4± 0.1 – 78.3

BERTBase 87.9± 0.2 – – 90.9± 0.1 53.3± 0.5 – 84.0± 0.1 84.6± 0.1 – 80.2

Table 11: GLUE dev performance at 3.5X speedup. Each score with standard deviation is averaged over 20 trials.
Larger score indicates better performance. The best score among each token selection method is embolden for
each column. Note, missing values indicate that no accuracy score is observed for 3.5X speedup.

METHOD STS-B MRPC SST-2 QNLI COLA RTE MNLI-M MNLI-MM QQP MEAN

Input-First-K-Select 86.4± 0.1 81.4± 0.2 83.8± 0.2 84.8± 0.0 49.7± 0.5 63.5± 0.5 77.8± 0.1 75.9± 0.0 80.8± 0.1 76.0
First-K-Select 86.4± 0.1 80.9± 0.2 84.4± 0.2 84.4± 0.1 49.7± 0.5 63.5± 0.5 76.7± 0.1 75.6± 0.1 80.4± 0.0 76.1
Random-Select 86.8± 0.1 83.2± 0.3 85.6± 0.3 86.4± 0.1 49.5± 0.5 62.1± 0.8 81.4± 0.1 78.7± 0.1 87.0± 0.1 77.9
Average-Pool 81.6± 0.1 83.9± 0.3 85.2± 0.2 84.1± 0.1 3.0± 0.6 59.2± 0.5 75.4± 0.1 76.7± 0.1 79.4± 0.0 69.6
Attention-Select 87.0± 0.1 84.6± 0.3 86.0± 0.2 86.8± 0.1 51.1± 0.4 63.4± 0.6 82.5± 0.1 82.7± 0.1 87.3± 0.1 79.0
Coreset-Select-CLS (ours) 87.0± 0.1 86.2± 0.1 87.3± 0.1 87.8± 0.1 51.7± 0.3 63.7± 0.5 82.4± 0.1 82.6± 0.1 87.3± 0.0 79.6
Coreset-Select-Opt (ours) 87.0± 0.1 86.9± 0.2 89.6± 0.1 87.8± 0.1 52.8± 0.3 63.7± 0.5 82.5± 0.1 82.7± 0.1 87.3± 0.0 80.0

BERTBase 87.9± 0.2 87.3± 0.2 92.4± 0.1 90.9± 0.1 53.3± 0.5 65.8± 0.5 84.0± 0.1 84.6± 0.1 87.5± 0.1 81.5

Table 12: GLUE dev performance at 3X speedup. Each score with standard deviation is averaged over 20 trials.
Larger score indicates better performance. The best score among each token selection method is embolden for
each column.

METHOD STS-B MRPC SST-2 QNLI COLA RTE MNLI-M MNLI-MM QQP MEAN

Input-First-K-Select 87.8± 0.2 82.2± 0.2 91.8± 0.1 90.4± 0.1 51.9± 0.5 65.2± 0.5 81.9± 0.1 82.2± 0.1 85.4± 0.1 79.9
First-K-Select 87.8± 0.2 82.1± 0.2 91.2± 0.1 90.4± 0.1 51.9± 0.5 64.9± 0.5 81.9± 0.1 82.2± 0.1 84.9± 0.0 79.7
Random-Select 87.8± 0.1 86.6± 0.3 90.0± 0.2 88.9± 0.1 52.6± 0.5 64.9± 0.5 83.6± 0.1 80.3± 0.1 87.2± 0.1 80.2
Average-Pool 87.8± 0.2 85.8± 0.3 88.6± 0.1 86.3± 0.1 11.2± 0.7 60.2± 0.6 76.3± 0.0 82.9± 0.0 82.1± 0.0 73.4
Attention-Select 87.8± 0.1 86.8± 0.2 91.0± 0.1 90.4± 0.1 53.2± 0.5 65.7± 0.6 83.6± 0.1 84.1± 0.1 87.3± 0.1 81.1
Coreset-Select-CLS (ours) 87.6± 0.1 86.6± 0.2 90.1± 0.1 89.4± 0.1 53.2± 0.5 64.1± 0.5 83.9± 0.1 84.3± 0.1 87.5± 0.1 80.7
Coreset-Select-Opt (ours) 87.9± 0.1 87.2± 0.1 92.4± 0.1 89.4± 0.1 53.2± 0.5 64.9± 0.5 83.9± 0.1 84.3± 0.1 87.5± 0.0 81.2

BERTBase 87.9± 0.2 87.3± 0.2 92.4± 0.1 90.9± 0.1 53.3± 0.5 65.8± 0.5 84.0± 0.1 84.6± 0.1 87.5± 0.1 81.5

Table 13: GLUE dev performance at 2X speedup. Each score with standard deviation is averaged over 20 trials.
Larger score indicates better performance. The best score among each token selection method is embolden for
each column.

METHOD STS-B MRPC SST-2 QNLI COLA RTE MNLI-M MNLI-MM QQP MEAN

Input-First-K-Select 87.9± 0.2 86.8± 0.2 92.1± 0.1 90.8± 0.1 53.0± 0.5 65.6± 0.5 84.0± 0.1 84.1± 0.1 87.1± 0.1 81.3
First-K-Select 87.9± 0.2 86.4± 0.2 91.5± 0.1 90.8± 0.1 52.7± 0.4 65.2± 0.5 83.8± 0.1 84.0± 0.1 86.9± 0.0 81.0
Random-Select 87.8± 0.1 87.2± 0.2 91.9± 0.2 90.8± 0.1 53.1± 0.4 65.7± 0.5 83.9± 0.1 83.9± 0.1 87.4± 0.1 81.3
Average-Pool 87.8± 0.1 87.0± 0.2 90.3± 0.1 90.2± 0.1 25.6± 0.7 61.5± 0.6 80.9± 0.1 84.0± 0.0 85.7± 0.0 76.8
Attention-Select 87.9± 0.1 87.1± 0.1 92.3± 0.1 90.7± 0.1 53.2± 0.5 65.7± 0.5 84.0± 0.1 84.5± 0.1 87.4± 0.1 81.4
Coreset-Select-CLS (ours) 87.7± 0.1 86.9± 0.2 92.4± 0.1 90.9± 0.1 53.3± 0.5 65.4± 0.3 84.0± 0.0 84.6± 0.1 87.5± 0.1 81.4
Coreset-Select-Opt (ours) 87.9± 0.1 87.3± 0.2 92.4± 0.1 90.9± 0.1 53.3± 0.5 65.6± 0.5 84.0± 0.0 84.6± 0.1 87.5± 0.0 81.5

BERTBase 87.9± 0.2 87.3± 0.2 92.4± 0.1 90.9± 0.1 53.3± 0.5 65.8± 0.5 84.0± 0.1 84.6± 0.1 87.5± 0.1 81.5

Table 14: GLUE dev performance at 1.5X speedup. Each score with standard deviation is averaged over 20 trials.
Larger score indicates better performance. The best score among each token selection method is embolden for
each column.
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METHOD STS-B MRPC SST-2 QNLI COLA RTE MNLI-M MNLI-MM QQP MEAN

Input-first-k-select 85.3± 0.1 81.3± 0.2 83.3± 0.2 84.6± 0.0 49.0± 0.4 62.1± 0.5 76.9± 0.1 74.9± 0.1 80.6± 0.1 75.3
First-k-select 85.1± 0.1 81.5± 0.2 84.6± 0.2 84.3± 0.1 49.0± 0.4 62.0± 0.5 76.3± 0.1 74.5± 0.1 80.0± 0.0 75.3
Random-select 85.6± 0.2 83.3± 0.3 84.9± 0.2 85.1± 0.1 48.4± 0.4 61.8± 0.5 79.0± 0.1 79.3± 0.1 86.6± 0.1 77.1
Average-Pool 78.7± 0.1 83.1± 0.2 85.1± 0.2 84.0± 0.1 0.0± 0.0 59.8± 0.6 75.2± 0.1 76.3± 0.1 82.9± 0.1 69.5
Attention-select 85.4± 0.1 84.3± 0.2 87.2± 0.1 86.4± 0.1 50.9± 0.4 62.7± 0.4 80.5± 0.1 80.7± 0.1 87.0± 0.1 78.3
Coreset-Select-CLS (ours) 86.5± 0.1 86.0± 0.1 87.6± 0.1 86.6± 0.1 51.0± 0.4 63.6± 0.4 80.9± 0.1 81.6± 0.1 87.2± 0.1 79.0
Coreset-Select-Opt (ours) 86.7± 0.1 86.6± 0.2 87.7± 0.1 86.5± 0.1 52.3± 0.4 63.6± 0.4 81.0± 0.1 81.8± 0.1 87.3± 0.0 79.3

BERTBase 87.9± 0.2 87.3± 0.2 92.4± 0.1 90.9± 0.1 53.3± 0.5 65.8± 0.5 84.0± 0.1 84.6± 0.1 87.5± 0.1 81.5

Table 15: GLUE dev performance at at 70% space complexity reduction. Each score with standard deviation is
averaged over 20 trials. Larger score indicates better performance. The best score among each token selection
method is embolden for each column.

METHOD STS-B MRPC SST-2 QNLI COLA RTE MNLI-M MNLI-MM QQP MEAN

Input-first-k-select 87.9± 0.2 87.2± 0.2 91.8± 0.1 90.8± 0.1 53.0± 0.5 65.2± 0.5 84.0± 0.1 84.3± 0.1 87.1± 0.2 81.3
First-k-select 87.9± 0.2 87.2± 0.1 91.3± 0.1 90.9± 0.1 53.0± 0.5 65.2± 0.5 84.0± 0.1 84.3± 0.1 87.4± 0.1 81.2
Random-select 87.8± 0.1 87.1± 0.2 92.1± 0.1 90.9± 0.2 53.1± 0.4 65.7± 0.5 83.9± 0.1 84.4± 0.1 87.4± 0.2 81.4
Average-Pool 87.8± 0.1 87.2± 0.1 91.7± 0.1 89.2± 0.1 44.6± 0.5 64.1± 0.5 82.7± 0.1 83.7± 0.1 86.2± 0.1 79.7
Attention-select 87.9± 0.1 87.1± 0.1 92.3± 0.1 90.7± 0.1 53.2± 0.4 65.7± 0.5 83.9± 0.1 84.4± 0.1 87.5± 0.2 81.4
Coreset-Select-CLS (ours) 87.7± 0.1 87.3± 0.2 92.4± 0.1 90.9± 0.1 53.2± 0.4 65.5± 0.3 84.0± 0.1 84.3± 0.1 87.5± 0.1 81.4
Coreset-Select-Opt (ours) 87.9± 0.1 87.3± 0.2 92.4± 0.1 90.9± 0.1 53.2± 0.4 65.6± 0.5 84.0± 0.1 84.3± 0.1 87.5± 0.1 81.5

BERTBase 87.9± 0.2 87.3± 0.2 92.4± 0.1 90.9± 0.1 53.3± 0.5 65.8± 0.5 84.0± 0.1 84.6± 0.1 87.5± 0.1 81.5

Table 16: GLUE dev performance at at 30% space complexity reduction. Each score with standard deviation is
averaged over 20 trials. Larger score indicates better performance. The best score among each token selection
method is embolden for each column.

BIG BIRD PERFORMERS

METHOD CIFAR-10 PATHFINDER-32 IMDB (BYTE-LEVEL) MEAN CIFAR-10 PATHFINDER-32 IMDB (BYTE-LEVEL) MEAN

First-k-select 26.9± 0.2 55.6± 0.2 57.9± 0.1 46.8 26.9± 0.1 52.4± 0.2 59.9± 0.1 46.4
Random-select 39.4± 0.1 69.9± 0.2 59.6± 0.1 56.3 41.5± 0.2 58.2± 0.1 59.9± 0.1 53.2
Coreset-Select-CLS (ours) 38.6± 0.1 69.3± 0.2 59.1± 0.1 55.7 39.8± 0.1 61.5± 0.2 59.7± 0.1 53.7
Coreset-Select-Opt (ours) 43.3± 0.2 71.7± 0.1 61.4± 0.2 58.8 45.5± 0.1 67.7± 0.1 62.8± 0.1 58.7

Trans-No-Prune 40.9± 0.1 73.5± 0.2 63.8± 0.1 59.4 42.9± 0.1 66.2± 0.2 64.3± 0.1 57.8

Table 17: LRA test set performances at 70% space complexity reduction for Big Bird (left) and Performers (right)
as the backbone Transformer. Each score with standard deviation is averaged over 20 trials. Larger score indicates
better performance. The best score among each token selection method is embolden for each column.

BIG BIRD PERFORMERS

METHOD CIFAR-10 PATHFINDER-32 IMDB (BYTE-LEVEL) MEAN CIFAR-10 PATHFINDER-32 IMDB (BYTE-LEVEL) MEAN

First-k-select 37.2± 0.1 69.7± 0.2 62.8± 0.1 56.6 37.6± 0.1 64.6± 0.2 63.0± 0.1 55.1
Random-select 41.1± 0.2 70.0± 0.2 62.5± 0.1 57.9 43.2± 0.1 65.6± 0.2 63.3± 0.1 57.4
Coreset-Select-CLS (ours) 40.4± 0.2 72.3± 0.2 62.2± 0.1 58.3 41.9± 0.2 66.6± 0.1 63.1± 0.1 57.2
Coreset-Select-Opt (ours) 43.7± 0.1 72.3± 0.2 62.7± 0.1 59.6 46.1± 0.1 68.5± 0.2 63.9± 0.1 59.5

Trans-No-Prune 40.9± 0.1 73.5± 0.2 63.8± 0.1 59.4 42.9± 0.1 66.2± 0.2 64.3± 0.1 57.8

Table 18: LRA test set performances at 30% space complexity reduction for Big Bird (left) and Performers (right)
as the backbone Transformer. Each score with standard deviation is averaged over 20 trials. Larger score indicates
better performance. The best score among each token selection method is embolden for each column.
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Figure 8: SST-2: Pareto curves and scatter plots for accuracy vs. inference speedup trade-off. Each point corre-
sponds to a sequence-length configuration in Table 9. The pareto curves are used to generate accuracy vs. speedup
Table 1, 2, 11, 13.

Figure 9: MRPC: Pareto curves and scatter plots for accuracy vs. inference speedup trade-off. Each point corre-
sponds to a sequence-length configuration in Table 9. The pareto curves are used to generate accuracy vs. speedup
Table 1, 2, 11, 13.
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