
Continual Prompt Tuning for Dialog State Tracking

Qi Zhu1, Bing Li1, Fei Mi2, Xiaoyan Zhu1, Minlie Huang1∗

1CoAI Group, DCST, IAI, BNRIST, Tsinghua University
2Huawei Noah’s Ark Lab

zhu-q18@mails.tsinghua.edu.cn, aihuang@tsinghua.edu.cn

Abstract

A desirable dialog system should be able to
continually learn new skills without forgetting
old ones, and thereby adapt to new domains
or tasks in its life cycle. However, continually
training a model often leads to a well-known
catastrophic forgetting issue. In this paper, we
present Continual Prompt Tuning, a parameter-
efficient framework that not only avoids for-
getting but also enables knowledge transfer be-
tween tasks. To avoid forgetting, we only learn
and store a few prompt tokens’ embeddings
for each task while freezing the backbone
pre-trained model. To achieve bi-directional
knowledge transfer among tasks, we propose
several techniques (continual prompt initial-
ization, query fusion, and memory replay) to
transfer knowledge from preceding tasks and
a memory-guided technique to transfer knowl-
edge from subsequent tasks. Extensive exper-
iments demonstrate the effectiveness and effi-
ciency of our proposed method on continual
learning for dialog state tracking, compared
with state-of-the-art baselines.

1 Introduction

Recently, most studies have focused on developing
dialog systems for specific domains in an offline
manner, assuming the data distribution stays the
same. However, this is far from realistic because a
deployed dialog system is often required to support
new domains and provide more services constantly
over time. Therefore, it is crucial for a dialog sys-
tem to continually learn new tasks without forget-
ting old ones with high efficiency.

Previous studies on continual learning (Kirk-
patrick et al., 2017; Li and Hoiem, 2018) mainly
focused on solving the catastrophic forgetting (CF)
problem (McCloskey and Cohen, 1989): when a
neural model is trained on a sequence of tasks, new
tasks may interfere catastrophically with old tasks.
Simply storing a model version for each task to

*Corresponding author.

(a) Fine-tuning

Dialog Service name T5 (cuisine=Ethiopian, city=Berkeley)!"

USER: I'd like to find a place to eat.
SYSTEM: In which city are you looking for the
restaurant and do you have any preferred cuisine?
USER: Find me Ethiopian cuisine in Berkeley.

Dialog: restaurantsService name:

City in which the restaurant is located: <X>.
The amount of money to transfer: <Y>.
Cuisine of food served in the restaurant: <Z>.
…

Query:

(b) Continual Prompt Tuning

T5 <X> Berkeley <Y> None <Z> Ethiopian …Dialog Query Prompt

#$"

!"

!%"

&"'()$")"
Memory replay

Backward transfer

Query Fusion Initialize

PromptInput

Pre-trained
Model

Task 1

Task 2

Task 3

transform
forward transfer
backward transfer

PromptInput

Pre-trained
Model

Task 1

Task 2

Task 3

transform
forward transfer
backward transfer

26C2A1

Figure 1: An illustration of Continual Prompt Tuning.
We train a soft prompt for each task and freeze the
pre-trained model. Several techniques are proposed to
transfer knowledge from preceding tasks (green solid
arrows) and subsequent tasks (red dashed arrows).

mitigate forgetting is prohibitive as the number
of tasks grows, especially when the model size is
large. To mitigate catastrophic forgetting with low
computation and storage overhead, recent methods
freeze the backbone model and propose to train
a weight/feature mask (Mallya et al., 2018; Geng
et al., 2021) or an adapter (Madotto et al., 2021) for
each task independently. However, the techniques
above are still not efficient enough, and they largely
ignore knowledge transfer among tasks.

In this paper, we develop prompt tuning (Lester
et al., 2021) for continual learning. We freeze the
backbone pre-trained model and train a few prompt
tokens’ embeddings for each task, which is highly
parameter-efficient to avoid forgetting. As illus-
trated by yellow components in Figure 1, we con-
catenate the input with a few tunable task-specific
prompt tokens before feeding it to a frozen pre-
trained model. Since these prompt tokens have
only a small number of parameters (0.1% of the pre-
trained model’s parameters in our experiments), we
can efficiently train and store the prompt for each
task. During inference, the same pre-trained model
can handle different tasks by inputting different
prompts, which is friendly for deployment.

Unlike the vanilla approach of training each
task’s prompt from scratch and fixing it afterward,
we propose Continual Prompt Tuning, a framework

that enables knowledge transfer between tasks.
We consider transferring knowledge from both pre-
ceding tasks (forward) and subsequent tasks (back-
ward). To realize forward transfer, we propose
several techniques, including continual prompt ini-
tialization, query fusion, and memory replay (green
solid arrows in Figure 1). To achieve positive back-
ward transfer, we propose a memory-guided tech-
nique that uses subsequent tasks’ data to update
the previous tasks’ prompts selectively (red dashed
arrows in Figure 1).

We conduct experiments on Dialog State Track-
ing (DST), a core component of a dialog system,
using the Schema-Guided Dialog dataset (Rastogi
et al., 2020). The model continually learns new
services that have multiple slots to fill. We con-
catenate all slots’ descriptions with the input and
insert a sentinel token after each description, for-
mulating DST as a masked spans recovering task,
which is similar to the pre-training objective of T5
(Raffel et al., 2020). We empirically show that our
proposed framework effectively outperforms state-
of-the-art baselines on continual learning for DST,
and is extremely efficient in terms of computation
and storage.1

To summarize, our main contributions are:
1. For the first time, we develop prompt tuning

for continual learning, which avoids forgetting
efficiently and is friendly for deployment.

2. We investigate several techniques for forward
and backward knowledge transfer based on
prompt tuning, further boosting the continual
learning performance.

3. Our experiments on continual DST demonstrate
the superior performance and efficiency of our
proposed method.

2 Related Work

2.1 Continual Learning

Continual Learning (CL) studies the problem
of continually acquiring knowledge from a data
stream and reusing it for future learning while
avoiding forgetting. Three kinds of CL methods
have been developed. Rehearsal methods store
and replay some training samples from previous
tasks (Rebuffi et al., 2017; Lopez-Paz and Ranzato,
2017). Regularization methods apply additional
loss to aid knowledge consolidation (Kirkpatrick

1Code and data are publicly available at https://
github.com/thu-coai/CPT4DST

et al., 2017; Li and Hoiem, 2018). Architectural
methods introduce task-specific parameters for new
tasks and fix parameters for old tasks to prevent
forgetting, to which our method belongs. Previous
architectural methods include dynamic expanding
network structure (Rusu et al., 2016), iterative net-
work pruning and re-training (Mallya and Lazeb-
nik, 2018), learning a parameter mask for each task
individually (Mallya et al., 2018), etc.

For continual learning in dialog system, variants
of general CL methods have been applied (Lee,
2017; Shen et al., 2019; Wu et al., 2019; Mi et al.,
2020; Geng et al., 2021). AdapterCL (Madotto
et al., 2021) is the most related to our work, which
freezes the pre-trained model and learns an adapter
(Houlsby et al., 2019) for each task independently.
Compared with AdapterCL, our method is more
parameter-efficient, and we explore the effect of
both forward and backward transfer.

2.2 Prompt-based Tuning

Recent studies have found that using a textual
prompt to convert downstream tasks to the lan-
guage modeling task is a more effective way to
use pre-trained language models than typical fine-
tuning (Brown et al., 2020; Schick and Schütze,
2021). Prompts can be manual designed (Petroni
et al., 2019) or generated automatically (Shin et al.,
2020; Jiang et al., 2020; Gao et al., 2021). Since
searching prompts in discrete spaces is sub-optimal,
some works (Qin and Eisner, 2021; Liu et al.,
2021; Han et al., 2021) combine hard text prompts
and soft prompts whose embeddings are learned
through back-propagation. Lester et al. (2021)
show that freezing the pre-trained model and only
tuning soft prompts, known as prompt tuning, is
parameter-efficient and becomes more competitive
with fine-tuning as the model size grows.

Prompt tuning differs from embedding adapter
(Zhu et al., 2021) that aims to address the multilin-
gual embedding deficiency. An embedding adapter
transforms all tokens embeddings but do not affect
transformer layers’ computation, while prompt tun-
ing does not change tokens embeddings but adds
new tunable prompt tokens to the input, serving
as context and affecting all following transformer
layers. Gu et al. (2021) and Vu et al. (2021) further
explore the transferability of soft prompts across
tasks. While they investigate one-step adaptation,
we are interested in prompt transfer in the continual
learning setting.

https://github.com/thu-coai/CPT4DST
https://github.com/thu-coai/CPT4DST

2.3 Dialog State Tracking
Dialog State Tracking (DST) aims to capture user
goals in the form of (slot, value) pairs. Traditional
ontology-based classification methods (Mrkšić
et al., 2017; Lee et al., 2019) require access to
all candidate values. To alleviate the reliance on
the ontology and improve generalization to unseen
values, some work extract values from a dialog
context (Xu and Hu, 2018; Gao et al., 2019) while
others generate values directly to handle situations
where values are missing from the context (Wu
et al., 2019; Hosseini-Asl et al., 2020).

Generation-based models either generate all
(slot, value) pairs in one pass (Hosseini-Asl et al.,
2020; Madotto et al., 2021) or generate value for
each given slot separately (Wu et al., 2019). The
former are more efficient but can only predict in-
domain slots and lack transferability while the latter
can incorporate more information about a slot as
a query, such as a brief natural language descrip-
tion (Rastogi et al., 2020), slot type information
(Lin et al., 2021), possible values (Lee et al., 2021),
and the task definition and constraint (Mi et al.,
2022). Our proposed method integrates multiple
slot descriptions into a single query and generates
all values in one pass, which improves performance
without losing efficiency.

3 Method

3.1 Overview
The goal of continual learning is to sequentially
learn a model f : X × T → Y from a stream of
tasks T1...TT that can predict the target y given the
input x and task Tk ∈ T . We denote the data for
each task Tk as Dk. Our method is based on pre-
trained language models. Instead of fine-tuning a
pre-trained model in a traditional manner (Figure
2(a)), we freeze the model but "reprogram" it to
solve task Tk by adding m new soft prompt tokens
Pk = P 1

kP
2
k ...P

m
k to the textual input and tuning

the embeddings of Pk only. Since the prompt’s
parameters are much less than the model’s, we save
Pk for each task to avoid forgetting.

We treat each service/API as a task in continual
DST (service and task are used interchangeably).
To incorporate informative slot descriptions and
ease the decoding process, we convert the descrip-
tions into a query with masked spans and formulate
DST as a masked spans recovering task (Sec. 3.2).
To enhance knowledge transfer between tasks, we
propose continual prompt initialization, query fu-

sion, and memory replay for forward transfer (Sec.
3.3) and explore a memory-guided technique for
backward transfer (Sec. 3.4).

3.2 DST as Masked Spans Recovering

In DST, each service Tk has a set of pre-defined
slots Sk = {s1, ..., snk

} to be tracked. The input x
is a dialog and the output y consists of slot-value
pairs: {(s1, v1), (s2, v2), ..., (snk

, vnk
)}. Similar

to many NLP tasks, DST can be formulated as a
text-to-text generation task. Formally, we define a
function gk : X × Y → V∗ × V∗ for each service
Tk to transform the original data (x, y) to:

x̃, ỹ = gk(x, y) (1)

where V is the vocabulary and x̃, ỹ are texts that
serve as the model input and output, respectively.
For example, x̃ can be the concatenation of x and
service name, while ỹ is a sequence of slot-value
pairs (Madotto et al., 2021) (Figure 2(a)).

Previous research has shown that incorporating
a natural language description di for each slot si is
beneficial (Lin et al., 2021; Lee et al., 2021). They
concatenate the dialog x with each slot description
di and decode the value vi independently. However,
separately decoding is inefficient, especially when
there are many slots. To solve this, we concatenate
all slot descriptions and insert a sentinel token after
each description to form a query added to the input,
formulating DST as a masked spans recovering task
that generates all slot values in one pass:

x̃ = [x;Qk;Pk]

Qk = “dk1 : 〈M1〉. ... dknk
: 〈Mnk

〉.”
ỹ = “〈M1〉 vk1 ...〈Mnk

〉 vknk
”

(2)

where [·; ·] is the concatenation operation and 〈M∗〉
are distinct sentinel tokens representing masked
spans. The query Qk contains all nk slot descrip-
tions for task Tk with nk masked spans and ỹ con-
tains corresponding slot values leaded by the sen-
tinel tokens. If the value of a slot can not be inferred
from the input, we set it to "None". We freeze the
pre-trained model’s parameters θ and only optimize
the prompt’s parameters θPk

for each service Tk.
The loss function is:

LθPk
(Dk) = −

|Dk|∑
j=1

log pθ(ỹ
k
j |[xkj ;Qk;Pk]) (3)

(a) Fine-tuning

Dialog Service name T5 (cuisine=Ethiopian, city=Berkeley)!"

USER: I'd like to find a place to eat.
SYSTEM: In which city are you looking for the
restaurant and do you have any preferred cuisine?
USER: Find me Ethiopian cuisine in Berkeley.

Dialog: restaurantsService name:

City in which the restaurant is located: <X>.
The amount of money to transfer: <Y>.
Cuisine of food served in the restaurant: <Z>.
…

Query:

(b) Continual Prompt Tuning

T5 <X> Berkeley <Y> None <Z> Ethiopian …Dialog Query Prompt

#$"

!"

!%"

&"'()$")"
Memory replay

Backward transfer

Query Fusion Initialize

PromptInput

Pre-trained
Model

Task 1

Task 2

Task 3

transform

Figure 2: An illustration of Fine-tuning and Continual Prompt Tuning for continual DST. (a) Fine-tuning takes
the dialog and current service’s name as input and tunes T5 to generate slot-value pairs. (b) Continual Prompt
Tuning feeds the dialog, query consisting of slot descriptions and sentinel tokens, and prompt tokens to frozen T5
and tunes the prompt’s embeddings to generate values for all slots in the query. Continual prompt initialization,
query fusion, and memory replay are proposed to enhance forward transfer while subsequent services’ data will
be used for backward transfer. We show an example dialog, service name, fused query, and expected outputs. Slot
names and descriptions are in italic and values are underlined. Note that the second slot description in the query
belongs to another service ("banks") and is inserted by query fusion.

3.3 Forward Transfer

Reusing the knowledge acquired from preceding
tasks often improves and accelerates the learning
on future tasks. Therefore, we propose three types
of techniques for forward transfer that can be em-
ployed in combination.

3.3.1 Continual Prompt Initialization
An intuitive way to transfer knowledge is parame-
ter initialization. We explore two continual prompt
initialization strategies. CLInit uses last task’s
prompt Pk−1 to initialize current task’s prompt Pk.
SelectInit evaluates all {Pj}j<k on the validation
set of Tk without training and selects the one with
the lowest loss to initialize Pk. The initial prompt
of CLInit has been continually trained on all previ-
ous tasks, while SelectInit only considers the most
relevant task without interference from its subse-
quent tasks. We empirically compare these two
strategies in Sec. 5.3.

3.3.2 Query Fusion
We hope the model can learn to generate values
according to any slot descriptions, which is a gen-
eral skill that may improve performance on future
tasks. However, when training on the current task,
there is only one query that consists of the slot
descriptions of that task in a fixed order, which

may hinder the model from learning the general
skill. Therefore, we propose to augment the query
by mixing slot descriptions from the current and
previous tasks to help the prompt better understand
the correspondence between slot descriptions and
values. We fuse the query Qk with previous tasks’
queries {Qj}j<k for each sample, including three
steps: 1) sample n1 slots from Sk randomly, where
n1 is sampled from [1, |Sk|] uniformly. 2) sample
n2 slots from previous tasks’ slots

⋃
i<k Si ran-

domly, where n2 is sampled from [1, n1] uniformly.
3) combine the above n1 and n2 slots’ descriptions
in a random order as new Q

′
k, and modify ỹ accord-

ingly. Note that some original slots are dropped,
and values for added slots are set to "None".

3.3.3 Memory Replay
Previous studies (Rebuffi et al., 2017; Lopez-Paz
and Ranzato, 2017) store a few samples for each
task and replay them when training on new tasks to
mitigate forgetting. Since our prompt tuning frame-
work has already resolved forgetting, we focus on
how these samples benefit the current task. We as-
sume we can store |M | samples for each task (|M |
should be small) and denote Mi as the memory for
task Ti. When a new task Tk comes, we optimize
Pk on Dk and M<k =

⋃
i<kMi jointly, changing

the loss function to LθPk
(Dk +M<k).

When combined with query fusion, query Qi
for samples in the memory Mi are also fused with
queries {Qj}j≤k,j 6=i from other seen tasks, includ-
ing the current task. Note that in this way, samples
from other tasks can be viewed as "positive" sam-
ples to those added slots in Q

′
i since these samples

may have not "None" values for those added slots.

3.4 Memory-Guided Backward Transfer
Although fixing Pk immediately after training on
task Tk can avoid forgetting, it also blocks the
backward knowledge transfer from future tasks.
Motivated by Chaudhry et al. (2019), we explore
whether it is possible to improve the performance
on previous tasks with the help of memory when
a new task comes. Specifically, for each previous
task Ti, i < k, we initialize a new prompt P (k)

i to
Pi and trained it on current task’s data Dk with
memory Mi as regularization. During training, we
sample a batch from Dk and a batch from Mi syn-
chronously and denote the gradient from each batch
as gori and gref , respectively. We decide the gradi-
ent for update according to the angle between gori
and gref :

g =

{
gori, if gTori gref > 0

0, otherwise
(4)

which means we abort the update that will increase
the loss on memory batch. We empirically find that
this simple abortion is better than projecting gori
onto the normal plane of gref (Chaudhry et al.,
2019). After training, we update Pi to P

(k)
i if

P
(k)
i obtains lower loss and better (or equal) per-

formance on Mi than Pi.

4 Experimental Setup

Recently, Madotto et al. (2021) proposed a con-
tinual learning benchmark for task-oriented dialog
systems and compared several classic CL methods.
We adapt their data processing steps and baselines
in our experiments.

4.1 Dataset
We conduct experiments on Schema-Guided Dia-
log dataset (SGD) (Rastogi et al., 2020) that has
44 services over 19 domains. It also provides a
one-sentence description for each slot. We treat
each service as a task and only consider dialogs
involving a single service. We randomly split a
service’s dialogs into train/val/test sets at the ratio
of 7:1:2. The number of training samples of each

service ranges from 112 to 4.7K, and there are 2
to 10 slots for one service. More details about data
statistics can be found in the Appendix (Table 8).

4.2 Evaluation Protocol
We evaluate DST performance using the widely
adopted Joint Goal Accuracy (JGA) (Wu et al.,
2019), which requires all slots’ values are correctly
predicted. We assign the target service during test-
ing to avoid ambiguity since the same dialog can
be parsed differently under different services. We
denote aj,i as the JGA on the test set of task Ti
right after training on task Tj . We evaluate the CL
performance as the average JGA on all tasks after
training on the final task TT :

Avg. JGA =
1

T

T∑
i=1

aT,i (5)

Following Lopez-Paz and Ranzato (2017), we
define two metrics to measure the effect of forward
transfer and backward transfer, respectively:

FWT =
1

T − 1

T∑
i=2

ai−1,i

BWT =
1

T − 1

T−1∑
i=1

aT,i − ai,i

(6)

FWT is the averaged zero-shot performance on new
tasks, evaluating a model’s generalization ability.
BWT assesses the impact that learning on subse-
quent tasks has on a previous task. Negative BWT
indicates that the model has forgotten some previ-
ously acquired knowledge.

4.3 Baselines and Training Details
We adopt the following models from Madotto et al.
(2021) as baselines:
• Fine-tuning: Fine-tune the model on new task

data continually.
• Replay: Save |M | samples randomly sampled

from the training set of each task Ti to memory
Mi and jointly train the model on new task data
Dk and memory M<k.

• EWC: Maintain the memory in the same way as
Replay but use it to compute the Fisher informa-
tion matrix for regularization (Kirkpatrick et al.,
2017).

• AdapterCL: Freeze the pre-trained model and
train a residual Adapter (Houlsby et al., 2019) for
each task independently (Madotto et al., 2021).

Above methods use the same input and output for-
mat as in Figure 2(a).

Prompt tuning based methods including our pro-
posed Continual Prompt Tuning are list below:
• Prompt Tuning: Formulate DST as a masked

spans recovering task (Sec. 3.2) and only tune
the prompt for each task independently.

• Multi-task Prompt Tuning: Prompt Tuning in a
multi-task manner instead of CL. Train a single
prompt using all tasks’ data concurrently.

• Continual Prompt Tuning: Prompt Tuning with
CLInit (Sec. 3.3.1) and query fusion (Sec. 3.3.2).
– w/ memory with memory replay (Sec. 3.3.3).
– w/ memory & backward with memory replay

and memory-guided backward transfer (Sec.
3.4).

We use the following setting in the experiments
unless otherwise specified.

Training task sequences Since a sequence of all
(44) tasks is too long for the evaluation purpose, we
conduct most of the experiments on 15 tasks chosen
at random to save computing resources. We run
AdapterCL, Prompt Tuning, and Multi-task Prompt
Tuning 5 times with different random seeds because
they are agnostic to task order. The FWT and BWT
metrics for these models are left blank. We run
other methods in the same 5 task orders created
by random permutation. The selected tasks and
ordering are listed in the Appendix (Table 9).

Hyper-parameters We use T5-small as the back-
bone model and reuse its sentinel tokens (Raffel
et al., 2020). For each task, Continual Prompt Tun-
ing first trains 10 epochs with fused query (and
using memory if available) for forward transfer.
Afterward, it concentrates on the current task and
continues training 10 epochs on the original data of
the current task. When using backward transfer, we
train 5 epochs for each previous task. Other meth-
ods train 20 epochs for each task. We use AdamW
and set the learning rate to 3e-5 for Fine-tuning,
Replay, and EWC, 3e-3 for AdapterCL, and 0.5
for all prompt tuning based methods. We set the
batch size to 16 for prompt tuning based methods
and 8 for other methods. To avoid overfitting, we
perform early stopping if validation performance
does not improve for 5 consecutive epochs. The
weight for EWC regularization loss is 0.01. We set
the memory size |M | to 50 for each task and save
the same samples for all methods that require mem-
ory. We initialize prompt tokens with the tokens
randomly drawn from the vocabulary. For prompt
tuning based methods, we tune 100 soft prompt

tokens with the embedding size 512 for each task,
resulting in 51.2K parameters. To compare param-
eter efficiency, we adjust AdapterCL’s parameters
for each task to be nearly 1x or 20x as ours.

5 Experiments and Analysis

The experiments are organized as follows. We com-
pare our method with baselines in Sec. 5.1, and
present a comprehensive ablation study in Sec. 5.2.
We investigate the effect of prompt initialization in
Sec. 5.3, and the effect of model size and prompt
length in Sec. 5.4.

5.1 Main Experiment

Computation Resource Analysis. In CL, there
is a trade-off between performance and computa-
tion resources. Ideally, we hope to utilize the least
amount of computation resources to achieve the
best performance. We take three vital resources
into our consideration. Memory saves previous
tasks’ samples, which may involve privacy issue
and requires extra storage. Additional parame-
ters are the extra parameters we add to our model
to cope with different tasks along the CL process,
which should be kept to a minimum in order to
scale to long task sequences. Tunable parame-
ters are the trainable parameters when we learn
a task, which is important for GPU memory and
computation. We show the usage of these resources
in Table 1 (right). Replay stores |M | samples for
each task and does not need extra parameters. EWC
saves the Fisher information matrix and original
parameters, requiring two times additional param-
eters. AdapterCL, Prompt Tuning, and Continual
Prompt Tuning require no memory and only add a
small number (2% or 0.1%) of additional param-
eters for each task, largely reducing the computa-
tional and storage overhead. Apart from the vanilla
form, Continual Prompt Tuning can also utilize the
memory if available.

CL Performance Analysis. Overall CL results
of different methods are summarized in Table 1
(left). We have the following findings:
• Consistent with Madotto et al. (2021), both Fine-

tuning and EWC suffer from catastrophic forget-
ting while replaying memory can alleviate the
problem to a large extend. Fine-tuning and EWC
have a low Avg. JGA because of the large neg-
ative BWT, while Replay improves BWT a lot
thus has a high Avg. JGA.

Method Avg. JGA FWT BWT Memory +Params Tune Params

Fine-tuning 14.30.8 8.31.0 -49.94.4 - 0 1
EWC 13.91.1 8.40.9 -50.84.3 |M |*T 2 1
Replay 58.63.5 10.90.5 -3.22.3 |M |*T 0 1
AdapterCL (20x) 49.81.7 - - - 2%*T 2%
AdapterCL (1x) 30.61.1 - - - 0.1%*T 0.1%

Prompt Tuning 48.10.9 - - -

0.1%*T 0.1%
Continual Prompt Tuning 59.51.4 9.90.7 0 -

w/ memory 60.72.4 13.70.8 0 |M |*T
w/ memory & backward 61.22.5 13.70.8 0.50.4 |M |*T

Multi-task Prompt Tuning 64.01.9 - - - 0.1% 0.1%

Table 1: Performance and resource usage on 15 tasks CL in 5 random orders. Means and standard variances are
reported. "T" is the total number of tasks. "+Param" and "Tune Params" are additional parameters in total and
tunable parameters for each task, respectively, measured by the ratio to the pre-trained model’s parameters. We
adjust AdapterCL’s parameters for each task to nearly 1x or 20x parameters of prompt tuning based methods.

• Our proposed Prompt Tuning with masked spans
recovering is more parameter efficient than
AdapterCL. In terms of Avg. JGA, Prompt Tun-
ing is much better than AdapterCL with the same
size and comparable to AdapterCL with 20x pa-
rameters.

• Forward transfer through CLInit and query fu-
sion is effective for Prompt Tuning. Continual
Prompt Tuning improves over Prompt Tuning sig-
nificantly and outperforms baselines.

• When memory is available, our method achieves
the best results w.r.t. all metrics, closing the gap
between CL and multi-task learning. Memory
improves zero-shot performance (FWT) on new
tasks as Replay is better than Fine-tuning and
Continual Prompt Tuning w/ memory is better
than without memory.

• Our memory-guided backward transfer effec-
tively utilizes subsequent tasks to help previous
tasks. Although minor, Continual Prompt Tuning
w/ memory & backward is the only method that
exhibits positive BWT.

5.2 Ablation Study
To understand the effect of different proposed tech-
niques, we conduct an in-depth ablation study and
show the result in Table 2. Row 1 and 2 do not for-
mulate DST as a masked spans recovering (MSR)
task: the input is the concatenate of the dialog, ser-
vice name, and soft prompt, while the output is a
sequence of slot-value pairs as in Fine-tuning (Fig-
ure 2(a)). Several interesting observations can be
noted: First, formulating DST as MSR is benefi-

MSR CLInit QF MR Avg. JGA FWT

1 29.61.2 -
2 X 41.82.8 6.70.3
3 X 48.10.9 -
4 X X 57.62.5 9.61.2
5 X X X 59.51.4 9.90.7
6 X X X 60.41.1 11.90.6
7 X X X X 60.72.4 13.70.8

Table 2: Ablation study for masked spans recovering
formulation (MSR), prompt initialization (CLInit or
random), query fusion (QF) and memory replay (MR).

cial. Using MSR achieves better CL performance
regardless of learning each task independently (row
3 v.s. row 1) or continually using CLInit (row 4
v.s. row 2). Besides, MSR formulation improves
zero-shot generalization on new tasks (row 4 v.s.
row 2). Second, forward transfer through CLInit
brings large improvement for CL. CLInit outper-
forms random initialization greatly for both using
MSR formulation (row 4 v.s. 3) and not (row 2 v.s.
1). Third, both query fusion and memory replay
are effective. When they are used separately, mem-
ory replay (row 6) boosts the performance more
than query fusion (row 5), while applying them
altogether achieves the best performance (row 7).

5.3 Continual Prompt Initialization

In this experiment (Table 3), we compare CLInit
with other prompt initialization strategies for
Prompt Tuning in CL. SelectInit (see Sec. 3.3.1)

Initialization Avg. JGA FWT

Random 48.10.9 -
SelectInit 54.52.0 8.21.3

CLInit 57.62.5 9.61.2

Table 3: Comparison of different prompt initialization
strategies for Prompt Tuning.

Training Testing tasks
task sequence T40:44 T30:44 T15:44
T40:44 45.1 - -
T30:44 54.2 59.7 -
T15:44 59.0 64.4 64.3
T1:44 60.7 67.8 69.3

Table 4: Prompt Tuning with CLInit on the last 5, 15,
30, and 44 (all) tasks of the same task order. We report
the Avg. JGA on the last 5, 15, and 30 tasks, respec-
tively.

selects the prompt that has the best zero-shot perfor-
mance on the current task from all previous tasks’
prompts for initialization. We could see that both
SelectInit and CLInit outperform random initial-
ization significantly, demonstrating the effective-
ness of transferring knowledge from previous tasks
through prompt initialization. CLInit is slightly bet-
ter than SelectInit in both Avg. JGA and zero-shot
generalization (FWT), which reveals the benefit of
accumulating knowledge from all seen tasks. In
contrast, the prompt initialized by SelectInit has
seen fewer tasks and thus contains less knowledge,
which might explain the slightly worse result.

Based on the observation above, we further study
that whether seeing more preceding tasks further
helps CLInit. To this end, we choose a task order
of all 44 tasks at random (see Table 8 in the Ap-
pendix) and perform Prompt Tuning with CLInit on
the last 5, last 15, last 30, and all 44 tasks separately.
Formally, we train on four CL curriculums T40:44,
T30:44, T15:44, and T1:44, which have the same end-
ing. We calculate the Avg. JGA on the T40:44,
T30:44, and T15:44 if possible. As illustrated in Ta-
ble 4, performance on the same tasks (in the same
column) increases monotonously as the number of
preceding tasks grows. This pattern validates that
the benefit of CLInit becomes more evident as the
number of tasks increases. This finding suggests
that our method is suitable for long task sequences.

Tunable Parameters

A
vg

. J
G

A

0

20

40

60

80

1k 10k 100k

T5-small (60M) T5-base (220M) T5-large (770M)

Figure 3: Avg. JGA for Continual Prompt Tuning with
different pre-trained models and prompt lengths. The
x-axis is the number of tunable parameters in log scale.
The points on each curve correspond to 1, 5, 20, 100,
and 150 prompt tokens from left to right.

Prompt Length

1 5 20 100 150

T5-small (60M) 6.1 6.7 8.9 9.8 9.8
T5-base (220M) 5.7 9.9 12.9 18.3 15.0
T5-large (770M) 10.6 17.0 18.5 28.0 31.2

Table 5: FWT for Continual Prompt Tuning with differ-
ent pre-trained models and prompt lengths.

5.4 Model Size and Prompt Length

In this experiment, we analyze the influence of pre-
trained model size and prompt length. We vary the
pre-trained model in {T5-small, T5-base, T5-large}
and prompt length in {1, 5, 20, 100, 150} for Con-
tinual Prompt Tuning on the 15 tasks (the task order
is in Table 9 in the Appendix). Figure 3 shows Avg.
JGA and Table 5 shows FWT. We can observe that:
First, when fixing the prompt length, increasing
the model size improves the Avg. JGA as well
as the generalization ability measured by FWT in
most cases. Second, when the backbone model
size is fixed, increasing the prompt length improves
the overall performance in general. Furthermore,
we found that increasing prompt token length from
20 to 100 improves Avg. JGA and FWT more than
increasing it from 100 to 150, which is consistent
with the finding in Lester et al. (2021). Third, our
method becomes more parameter-efficient as the
backbone model size grows. With the same num-
ber of tunable parameters (x-axis), using a larger
pre-trained model achieves better Avg. JGA.

Memory Size

10 50 100

Replay 44.01.0 58.63.5 65.60.8

CPT w/ mem. 59.03.3 60.72.4 59.73.2

CPT w/ mem. & back. 58.63.7 61.22.5 60.43.3

BWT -0.40.5 0.50.4 0.80.4

Table 6: Avg. JGA for Replay and Continual Prompt
Tuning (CPT) with memory replay (and memory-
guided backward transfer) using different memory size.
BWT for CPT w/ mem. & back. is also shown.

5.5 The Effect of Memory Size

In this section, we compare the role of memory in
Replay and our method. We vary the memory size
per task |M | in {10, 50, 100} and show the per-
formance of Replay and Continual Prompt Tuning
with memory replay (and memory-guided back-
ward transfer) in Table 6. We can find that increas-
ing the memory size benefits Replay significantly.
This is not surprising because Replay and other
rehearsal methods rely on memory to solve the
challenging forgetting problem. When the memory
size is unlimited, Replay degenerates to multi-task
learning, which is powerful but costly in storage
and computation.

For Continual Prompt Tuning, however, the
memory is not used for retaining the performance
on previous tasks since parameters for previous
tasks are saved.
• In forward transfer, the memory helps recall pre-

vious tasks’ knowledge and serves as a comple-
ment to CLInit and query fusion. The influence
on Avg. JGA depends on the effect of transfer
learning on the current task via multi-task train-
ing (LθPk

(Dk +M<k)). As shown in the row 2
in Table 6, increasing the memory size does not
improve Avg. JGA significantly and may even
distract the model from learning the current do-
main. This result suggests that our method does
not need a large memory for forward transfer.

• In backward transfer, the memory gives refer-
ence gradients to guide the updates and serves as
a filter to decide whether to accept the updates.
Thus larger memory gives more accurate guid-
ance. From the bottom row in Table 6, we can
find that increasing memory size can improve the
effect of backward transfer.
We also conduct experiments using a percentage

memory budget, setting the memory size for each
task proportional to task data size: |Mi| ∝ |Di|.
This means low-resource tasks have fewer samples

Memory Size

fixed = 50 proportional

Replay 58.63.5 55.80.7

CPT w/ mem. 60.72.4 60.33.1

CPT w/ mem. & back. 61.22.5 60.73.4

BWT 0.50.4 0.40.5

Table 7: Avg. JGA for Replay and Continual Prompt
Tuning (CPT) with memory replay (and memory-
guided backward transfer) using the fixed/proportional
memory size. The total memory sizes are the same.
BWT for CPT w/ mem. & back. is also shown.

stored in the memory than in the original setting.
We set the total memory size to 50 * T, where
T is the number of tasks. As shown in Table 7,
Replay performs much worse (58.6→55.8) in the
unbalanced task memory setting while the effect
on Continual Prompt Tuning w/ mem. is slight
(60.7→60.3). Besides, our proposed backward
transfer technique is still effective.

Overall, these results indicate that compared
with Replay, our method uses the memory differ-
ently and benefits less from enlarging the memory.

6 Conclusion

In this paper, we develop prompt tuning for con-
tinual learning for the first time. We propose Con-
tinual Prompt Tuning, a highly parameter-efficient
framework that avoids forgetting and enables for-
ward/backward knowledge transfer among tasks.
For forward transfer, we explore continual prompt
initialization, query fusion, and memory replay
techniques. For backward transfer, we devise
a memory-guided technique. Extensive experi-
ments on continual learning for DST demonstrate
the effectiveness and efficiency of our proposed
method compared with state-of-the-art baselines.
Our method and findings will foster more future
studies towards building more scalable, adaptable
task-oriented dialog systems.

Acknowledgements

This work was supported by the National Sci-
ence Foundation for Distinguished Young Scholars
(with No. 62125604) and the NSFC projects (Key
project with No. 61936010 and regular project with
No. 61876096). This work was also supported
by the Guoqiang Institute of Tsinghua University,
with Grant No. 2019GQG1 and 2020GQG0005,
and sponsored by Tsinghua-Toyota Joint Research
Fund.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019. Efficient
lifelong learning with a-GEM. In International Con-
ference on Learning Representations.

Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagy-
oung Chung, and Dilek Hakkani-Tur. 2019. Dialog
state tracking: A neural reading comprehension ap-
proach. In Proceedings of the 20th Annual SIGdial
Meeting on Discourse and Dialogue, pages 264–273,
Stockholm, Sweden. Association for Computational
Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Binzong Geng, Fajie Yuan, Qiancheng Xu, Ying Shen,
Ruifeng Xu, and Min Yang. 2021. Continual learn-
ing for task-oriented dialogue system with iterative
network pruning, expanding and masking. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 517–
523, Online. Association for Computational Linguis-
tics.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning. arXiv preprint arXiv:2109.04332.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu,
and Maosong Sun. 2021. Ptr: Prompt tuning
with rules for text classification. arXiv preprint
arXiv:2105.11259.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179–20191. Curran Associates,
Inc.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. In Proceedings of the National Academy
of Sciences, volume 114(13), pages 3521–3526. Na-
tional Academy of Sciences.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf.
2021. Dialogue state tracking with a language
model using schema-driven prompting. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4937–4949,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.
SUMBT: Slot-utterance matching for universal and
scalable belief tracking. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5478–5483, Florence, Italy.
Association for Computational Linguistics.

Sungjin Lee. 2017. Toward continual learn-
ing for conversational agents. arXiv preprint
arXiv:1712.09943.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Zhizhong Li and Derek Hoiem. 2018. Learning with-
out forgetting. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 40(12):2935–2947.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,
Andrea Madotto, Eunjoon Cho, and Rajen Subba.
2021. Leveraging slot descriptions for zero-shot
cross-domain dialogue StateTracking. In Proceed-
ings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5640–5648, Online. Association for Computational
Linguistics.

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX
https://doi.org/10.18653/v1/W19-5932
https://doi.org/10.18653/v1/W19-5932
https://doi.org/10.18653/v1/W19-5932
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-short.66
https://doi.org/10.18653/v1/2021.acl-short.66
https://doi.org/10.18653/v1/2021.acl-short.66
https://arxiv.org/abs/2109.04332
https://arxiv.org/abs/2109.04332
https://arxiv.org/abs/2105.11259
https://arxiv.org/abs/2105.11259
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://aclanthology.org/2021.emnlp-main.404
https://aclanthology.org/2021.emnlp-main.404
https://doi.org/10.18653/v1/P19-1546
https://doi.org/10.18653/v1/P19-1546
https://arxiv.org/abs/1712.09943
https://arxiv.org/abs/1712.09943
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.18653/v1/2021.naacl-main.448

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17,
page 6470–6479. Curran Associates Inc.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, Pascale Fung, and Zhiguang Wang.
2021. Continual learning in task-oriented dialogue
systems. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7452–7467, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
2018. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In Proceed-
ings of the European Conference on Computer Vi-
sion (ECCV).

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by itera-
tive pruning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of
Learning and Motivation, volume 24, pages 109–
165. Academic Press.

Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang,
and Boi Faltings. 2020. Continual learning for nat-
ural language generation in task-oriented dialog sys-
tems. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3461–3474,
Online. Association for Computational Linguistics.

Fei Mi, Yitong Li, Yasheng Wang, Xin Jiang, and Qun
Liu. 2022. Cins: Comprehensive instruction for few-
shot learning in task-orienteddialog systems. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state track-
ing. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1777–1788, Vancouver,
Canada. Association for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Compu-
tational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34(05), pages 8689–8696.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H. Lampert. 2017.
icarl: Incremental classifier and representation
learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Timo Schick and Hinrich Schütze. 2021. It’s not just
size that matters: Small language models are also
few-shot learners. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2339–2352, Online. As-
sociation for Computational Linguistics.

Yilin Shen, Xiangyu Zeng, and Hongxia Jin. 2019.
A progressive model to enable continual learning
for semantic slot filling. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1279–1284, Hong Kong,
China. Association for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4222–4235, Online. Association for Computational
Linguistics.

https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
http://papers.nips.cc/paper/7225-gradient-episodic-memory-for-continual-learning
https://aclanthology.org/2021.emnlp-main.590
https://aclanthology.org/2021.emnlp-main.590
https://openaccess.thecvf.com/content_ECCV_2018/html/Arun_Mallya_Piggyback_Adapting_a_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Arun_Mallya_Piggyback_Adapting_a_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.html
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://arxiv.org/abs/2109.04645
https://arxiv.org/abs/2109.04645
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://openaccess.thecvf.com/content_cvpr_2017/html/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.html
https://arxiv.org/abs/1606.04671
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/D19-1126
https://doi.org/10.18653/v1/D19-1126
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou,
and Daniel Cer. 2021. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv
preprint arXiv:2110.07904.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 808–819, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Puyang Xu and Qi Hu. 2018. An end-to-end approach
for handling unknown slot values in dialogue state
tracking. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1448–1457, Mel-
bourne, Australia. Association for Computational
Linguistics.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingx-
uan Wang, and Lei Li. 2021. Counter-interference
adapter for multilingual machine translation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2812–2823, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

https://arxiv.org/abs/2110.07904
https://arxiv.org/abs/2110.07904
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P18-1134
https://doi.org/10.18653/v1/P18-1134
https://doi.org/10.18653/v1/P18-1134
https://aclanthology.org/2021.findings-emnlp.240
https://aclanthology.org/2021.findings-emnlp.240

Task ID Service # Slots # Dialogs # Samples Avg. tokens

Train Dev Test Train Dev Test Context Query

1 events_3 5 53 7 16 312 40 105 121 47
2 banks_2 4 29 4 9 220 31 72 111 49
3 banks_1 4 144 21 42 1138 169 335 114 57
4 calendar_1 4 118 17 34 773 110 234 112 33
5 movies_3 3 33 5 10 112 18 37 72 26
6 music_2 5 231 33 67 1593 221 469 117 54
7 services_2 5 129 19 37 917 148 253 131 52
8 payment_1 4 25 3 8 233 33 89 171 52
9 media_1 4 196 28 57 1207 182 360 99 48

10 weather_1 2 58 8 17 259 39 66 77 16
11 events_1 6 202 29 58 1424 195 400 132 64
12 flights_4 7 60 9 18 290 41 87 90 77
13 travel_1 4 48 7 14 231 28 63 87 59
14 buses_2 6 111 16 32 857 120 234 137 54
15 events_2 6 400 57 115 3537 521 1067 159 59
16 alarm_1 2 58 9 17 367 49 107 101 22
17 buses_3 7 61 9 18 405 66 114 123 69
18 services_1 5 185 27 53 1241 180 352 129 58
19 buses_1 5 136 20 39 1054 143 313 138 49
20 restaurants_2 9 87 13 28 807 113 240 154 97
21 hotels_2 6 212 31 61 1569 234 460 152 73
22 ridesharing_2 3 64 9 19 380 49 108 106 34
23 rentalcars_1 6 100 14 29 840 120 242 161 59
24 movies_1 8 263 37 76 1873 250 556 122 70
25 ridesharing_1 3 74 10 22 412 57 125 103 36
26 media_3 4 56 8 16 327 42 89 95 36
27 music_3 6 17 3 5 112 19 32 114 60
28 movies_2 3 32 5 10 118 20 38 70 30
29 flights_2 7 129 19 37 822 115 251 127 75
30 services_4 5 86 13 25 680 97 208 154 49
31 flights_1 10 560 80 160 4680 667 1379 168 10
32 services_3 5 131 19 38 959 143 290 143 54
33 flights_3 8 65 10 19 420 75 116 133 79
34 trains_1 7 58 9 17 415 67 117 131 76
35 homes_2 8 62 9 18 424 56 139 140 89
36 rentalcars_2 6 77 11 23 631 91 185 157 61
37 restaurants_1 9 256 37 74 2098 297 581 153 10
38 music_1 6 68 10 20 468 73 142 118 61
39 hotels_4 7 80 12 23 559 99 141 134 72
40 media_2 5 32 4 10 215 29 71 112 59
41 hotels_3 6 90 13 26 737 100 193 157 64
42 rentalcars_3 7 44 7 13 332 55 99 148 72
43 hotels_1 7 99 14 29 868 105 250 161 71
44 homes_1 7 244 35 70 1829 282 540 159 81

Table 8: Statistics of the services we used. Average tokens of dialog context and query is calculated using T5
tokenizer. Services are arranged in the order of their appearance in our 44 task experiment (Sec. 5.3). Last 15
services are used for all our 15 task experiments.

Task order Tasks’ IDs in order

Order1 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
Order2 39 33 36 42 40 37 38 34 32 35 41 31 30 44 43
Order3 30 41 38 31 43 39 40 33 34 44 37 36 32 35 42
Order4 43 40 44 38 30 37 31 39 32 35 41 34 33 36 42
Order5 30 33 44 31 38 32 42 40 37 43 36 39 41 35 34

Table 9: Five task orders of all our 15 tasks experiments. We use last 15 tasks in Table 8. The task order for Section
5.4 is Order1.

