@inproceedings{yue-etal-2022-synthetic,
title = "Synthetic Question Value Estimation for Domain Adaptation of Question Answering",
author = "Yue, Xiang and
Yao, Ziyu and
Sun, Huan",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.95",
doi = "10.18653/v1/2022.acl-long.95",
pages = "1340--1351",
abstract = "Synthesizing QA pairs with a question generator (QG) on the target domain has become a popular approach for domain adaptation of question answering (QA) models. Since synthetic questions are often noisy in practice, existing work adapts scores from a pretrained QA (or QG) model as criteria to select high-quality questions. However, these scores do not directly serve the ultimate goal of improving QA performance on the target domain. In this paper, we introduce a novel idea of training a question value estimator (QVE) that directly estimates the usefulness of synthetic questions for improving the target-domain QA performance. By conducting comprehensive experiments, we show that the synthetic questions selected by QVE can help achieve better target-domain QA performance, in comparison with existing techniques. We additionally show that by using such questions and only around 15{\%} of the human annotations on the target domain, we can achieve comparable performance to the fully-supervised baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yue-etal-2022-synthetic">
<titleInfo>
<title>Synthetic Question Value Estimation for Domain Adaptation of Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Yue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziyu</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Synthesizing QA pairs with a question generator (QG) on the target domain has become a popular approach for domain adaptation of question answering (QA) models. Since synthetic questions are often noisy in practice, existing work adapts scores from a pretrained QA (or QG) model as criteria to select high-quality questions. However, these scores do not directly serve the ultimate goal of improving QA performance on the target domain. In this paper, we introduce a novel idea of training a question value estimator (QVE) that directly estimates the usefulness of synthetic questions for improving the target-domain QA performance. By conducting comprehensive experiments, we show that the synthetic questions selected by QVE can help achieve better target-domain QA performance, in comparison with existing techniques. We additionally show that by using such questions and only around 15% of the human annotations on the target domain, we can achieve comparable performance to the fully-supervised baselines.</abstract>
<identifier type="citekey">yue-etal-2022-synthetic</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.95</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.95</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1340</start>
<end>1351</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Synthetic Question Value Estimation for Domain Adaptation of Question Answering
%A Yue, Xiang
%A Yao, Ziyu
%A Sun, Huan
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F yue-etal-2022-synthetic
%X Synthesizing QA pairs with a question generator (QG) on the target domain has become a popular approach for domain adaptation of question answering (QA) models. Since synthetic questions are often noisy in practice, existing work adapts scores from a pretrained QA (or QG) model as criteria to select high-quality questions. However, these scores do not directly serve the ultimate goal of improving QA performance on the target domain. In this paper, we introduce a novel idea of training a question value estimator (QVE) that directly estimates the usefulness of synthetic questions for improving the target-domain QA performance. By conducting comprehensive experiments, we show that the synthetic questions selected by QVE can help achieve better target-domain QA performance, in comparison with existing techniques. We additionally show that by using such questions and only around 15% of the human annotations on the target domain, we can achieve comparable performance to the fully-supervised baselines.
%R 10.18653/v1/2022.acl-long.95
%U https://aclanthology.org/2022.acl-long.95
%U https://doi.org/10.18653/v1/2022.acl-long.95
%P 1340-1351
Markdown (Informal)
[Synthetic Question Value Estimation for Domain Adaptation of Question Answering](https://aclanthology.org/2022.acl-long.95) (Yue et al., ACL 2022)
ACL