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Abstract

Synthesizing QA pairs with a question gener-
ator (QG) on the target domain has become
a popular approach for domain adaptation of
question answering (QA) models. Since syn-
thetic questions are often noisy in practice, ex-
isting work adapts scores from a pretrained
QA (or QG) model as criteria to select high-
quality questions. However, these scores do
not directly serve the ultimate goal of improv-
ing QA performance on the target domain. In
this paper, we introduce a novel idea of train-
ing a question value estimator (QVE) that di-
rectly estimates the usefulness of synthetic
questions for improving the target-domain QA
performance. By conducting comprehensive
experiments, we show that the synthetic ques-
tions selected by QVE can help achieve bet-
ter target-domain QA performance, in compar-
ison with existing techniques. We additionally
show that by using such questions and only
around 15% of the human annotations on the
target domain, we can achieve comparable per-
formance to the fully-supervised baselines.1

1 Introduction

Question answering (QA) systems based on pre-
trained language models such as BERT (Devlin
et al., 2019) have recently achieved promising
performance in machine reading comprehension.
However, neural QA systems trained on one do-
main may not generalize well to another, leaving
it challenging to deploy such systems on new do-
mains that lack large-scale QA training data2. In
this paper, we are interested in semi-supervised
domain adaptation: we aim to build a target QA
model with source-domain data and a small number
of target-domain annotated QA pairs.

1Our source code is available at: https://github.
com/xiangyue9607/QVE

2Large-scale training data are typically 60-100K in size.
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Figure 1: Existing work repurposes a pretrained QA
(or QG) model to evaluate the quality of the gener-
ated questions, which is not directly associated with the
target-domain QA performance and may select ques-
tions that are semantically-mismatched or ask about a
simple fact. In contrast, our Question Value Estima-
tor (QVE) learns to select useful questions with target-
domain QA performance gain as direct feedback.

Due to high annotation costs, existing work
(Golub et al., 2017; Dong et al., 2019; Wang et al.,
2019; Puri et al., 2020; Chen et al., 2020; Yue et al.,
2021) proposes to synthesize target-domain QA
pairs via neural question generation (QG) mod-
els. The synthetic data are then used to train a QA
model on the target domain. In practice, however,
the generated questions are often of low quality,
such as being semantically mismatched with their
paired answers or asking about simple facts (Fig-
ure 1). Including all such questions for QA training
is less likely to bring substantial improvements.
This inspires us to study a crucial problem:
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Given a set of target-domain synthetic QA pairs,
how to select high-quality ones that are useful to
improve target-domain QA training?

To address the problem, Alberti et al. (2019)
propose the Roundtrip Consistency (RTC) method,
which filters3 questions that cannot be correctly
answered by a pretrained QA model. Other work
(Shakeri et al., 2020) considers using the genera-
tion log likelihood by the QG model (LM Score) as
a metric to filter noisy questions (Figure 1, top). Al-
though these filtering techniques have been shown
to improve the question quality to some extent
(Rennie et al., 2020), they are not directly opti-
mized for selecting questions that can improve QA
performance on the target domain. For example,
some useful but difficult questions (e.g., the last ex-
ample in Figure 1) may be filtered by the Roundtrip
method, since they cannot be answered correctly
by the pretrained QA model. However, these ques-
tions are often crucial to further improving QA
performance when added into training.

In this paper, we propose a question value esti-
mator (QVE) (Figure 1, middle) to select questions
that can improve QA performance on the target
domain. QVE takes in generated QA examples and
outputs real-valued scores (i.e., question values),
which are expected to represent the usefulness of
generated questions in terms of improving target-
domain QA performance. However, training the
QVE model towards this goal is challenging due to
the lack of supervision (i.e., true question values).

To solve the problem, we propose to train the
QVE with direct QA feedback from the target do-
main. Intuitively, if a batch of synthetic questions
(when used for training) leads to increasing accu-
racy of the target-domain QA model, QVE should
assign high values to them; the more the accuracy
increases, the higher the question values should be.
Thus, we optimize QVE with the target-domain QA
performance gain after adding the selected ques-
tions into training. More formally, given the dis-
crete and non-differentiable question selection pro-
cess, we formulate the question selection of QVE
as a reinforcement learning (Williams, 1992) prob-
lem (Figure 2). The QVE receives a batch of syn-
thetic samples each time and learns to select high-
quality ones based on their estimated values. The
selected samples are then used to train the target-
domain QA model, with the resulting performance

3We interchangeably use “filter” (noisy/low-quality ques-
tions) and “select” (useful/high-quality questions).

gain (on the available target-domain annotations)
as the reward. The reward guides the optimization
of QVE such that it will eventually make proper
question value estimation and selection.

To evaluate the QVE model, we instantiate the
QG and the QA model based on the pretrained
BART (Lewis et al., 2020) and BERT (Devlin
et al., 2019), respectively. By carrying out compre-
hensive experiments on four commonly-used read-
ing comprehension datasets (Trischler et al., 2017;
Joshi et al., 2017; Yang et al., 2018; Kwiatkowski
et al., 2019), we show that: (1) our QVE model
trained with the target-domain QA feedback sub-
stantially outperforms the question selection tech-
niques trained without direct QA feedback (Alberti
et al., 2019; Shakeri et al., 2020). (2) When using
our QVE model to select synthetic questions, QA
models can achieve comparable performance to
fully-supervised baselines while using only 15% of
the full target-domain annotations, which indicates
that our method can greatly alleviate human annota-
tion effort in practice. (3) To understand why QVE
brings superior improvement, we conduct human
evaluation and find that QVE can better identify
semantically-matched and difficult questions.

2 Related Work

Domain Adaptation of Question Answering. In
this field, some work (Wiese et al., 2017; Chung
et al., 2018; Hazen et al., 2019; Cao et al., 2020)
assumes that target-domain annotated questions are
available, however, manually creating questions is
costly. Therefore, another line of research work
(Golub et al., 2017; Wang et al., 2019; Lee et al.,
2020; Shakeri et al., 2020) investigates a domain
adaptation setting where annotated questions are
not available on the target domain. A commonly-
adopted approach of this line is to leverage a neural
question generation (QG) model (Du et al., 2017;
Zhou et al., 2017; Sun et al., 2018; Zhao et al.,
2018; Nema et al., 2019; Tuan et al., 2020) to au-
tomatically synthesize questions given unlabeled
contexts (Du and Cardie, 2018; Zhang and Bansal,
2019; Wang et al., 2019; Liu et al., 2020; Golub
et al., 2017; Wang et al., 2019; Lee et al., 2020;
Shakeri et al., 2020; Yue et al., 2021); see more
discussions in Section 3. However, it is very chal-
lenging to achieve satisfying performance without
any target annotations. In our work, we study semi-
supervised domain adaptation of QA, and assume
a small number of target annotations are available,
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which can greatly help models adapt to the target
domain while requiring minimal human effort.

Unsupervised and Semi-supervised QA are two
other research topics relevant to our work (Fabbri
et al., 2020; Li et al., 2020; Lewis et al., 2019;
Dhingra et al., 2018). Unlike domain adaptation,
these two settings do not assume the existence of
the “source domain” and synthesize cloze-style
questions via rule-based methods for building QA
models. Since rule-based QG methods typically
have much worse performance than neural ones
(pretrained on the source data), we do not compare
with these two lines of research in experiments.

Data Selection methods aim to select a useful sub-
set from the (noisy) training data. Though (RL-
based) data selection methods were explored in
other NLP tasks (Ruder and Plank, 2017; Qu et al.,
2019; Liu et al., 2019), none of them can be directly
applied with trivial efforts to our QA scenario and
semi-supervised setting. For example, (Ruder and
Plank, 2017) and (Liu et al., 2019) reward or mea-
sure the selection with the distribution distance
between the selected data and target data, while
we reward the selection by measuring how large
the improvement the selected data can bring for
target-domain QA training, which is more aligned
with the end goal. Our work is mostly inspired by
recent research on data selection in machine learn-
ing community (Ghorbani and Zou, 2019; Jia et al.,
2019), particularly (Yoon et al., 2020). However,
the significant differences between our work and
(Yoon et al., 2020) are as follows: 1) we study a
very challenging task, domain adaptation of ques-
tion answering, which was not studied in (Yoon
et al., 2020). How to develop a method in a sim-
ilar spirit for this task is unexplored. 2) In order
to study the task, we begin our method by first
proposing two data selection methods that are not
covered in (Yoon et al., 2020) but achieve compara-
ble results to existing baselines. We then introduce
our RL-based method with a carefully-designed
reward, which is well connected to the end goal of
improving target-QA performance.

3 Background

3.1 Domain Adaptation of QA via QG

Semi-supervised Domain Adaptation. We study
the semi-supervised domain adaptation of extrac-
tive question answering, where the source-domain

and a small number4 of target-domain QA annota-
tions are provided. Formally, we denote the source-
domain QA dataset as Ds = {(csi, qsi , asi)}Ni=1,
where large-scale tuples of context csi , question
qsi , and answer asi are available. For the target
domain, only a small set of annotated QA pairs
Dt = {(ctj , qtj , atj)}Mj=1 are available (M � N ).
Since unlabeled contexts are easy to collect, we as-
sume that they are largely available: Ct = {ctl}Ll=1

(L�M ). The task is to build a QA model that can
accurately answer questions on the target domain,
given Ds, Dt, and Ct.
Domain Adaptation via Question Generation.
Given the lack of large-scale target-domain anno-
tations, an intuitive approach to domain adapta-
tion is first synthesizing target-domain QA data
Dt
syn = {(ctl , qtl , atl)}Ll=1 automatically from the

unlabeled contexts Ct, and then training a target-
domain QA model on the synthetic (Dt

syn) and the
small-size annotated (Dt) target-domain data. In
such an approach, a question generator (QG) gφ
is first pretrained on the source training data and
further finetuned on the available target-domain an-
notated QA pairs. A well-trained QG model then
takes target-domain context-answer pairs as input
to generate a question: qtl = gφ(c

t
l , a

t
l).

Although this approach has been shown promis-
ing, in practice, its effectiveness is restricted by the
quality of synthetic questions. Thus, learning to
select ones that can lead to a better target-domain
QA model becomes a crucial problem.

With respect to how to obtain atl for QG, in this
paper, we assume an answer atl (i.e., a text span in
the context ctl) is given, following Du et al. (2017).
When the answer atl is not given, it can be extracted
from the given context by using an entity recogni-
tion tool (Du and Cardie, 2018), a classifier (Puri
et al., 2020) or a seq2seq model (Shakeri et al.,
2020). Note that noise caused by such answer ex-
traction tools will further lower the overall quality
of the synthesized questions. In this paper, we fo-
cus on how to select useful synthetic questions in
general (i.e., those questions can be synthesized by
any QG process) and assume answers are given for
simplicity.

3.2 Synthetic Question Selection

Given the synthetic target-domain QA data Dt
syn,

the task is to select high-quality pairs from Dt
syn

4In our experiments, we assume 1,000 target annotations
available, which is around 1-1.5% of the original training data.
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that are useful to improve target-domain QA train-
ing. Such a selection decision is often made based
on some scores that can indicate the quality of
the pairs. For example, Roundtrip filtering (Al-
berti et al., 2019) selects questions based on the
extracted answer’s correctness by a pretrained QA
model. Similarly, LM filtering (Shakeri et al., 2020)
selects questions with high log-likelihood scores
in the generation. However, these scores do not
directly serve the goal of improving target-domain
QA training. Inspired by recent research on data se-
lection in the machine learning community (Ghor-
bani and Zou, 2019; Jia et al., 2019; Yoon et al.,
2020), we propose a new idea of training a question
value estimator, which predicts the usefulness of a
synthetic question for target-domain QA.

4 Question Value Estimator (QVE)

Formally, we design a question value estimator
(QVE), eγ , which takes in a synthetic QA example
(cl, ql, al) (for simplicity, we omit the superscript
t) and outputs a score indicating its “value,” i.e.,
vl = eγ(cl, ql, al). The “value” can imply “the
potential for improving the target-domain QA per-
formance when being used as a training sample”.
With this score, one can select most useful synthetic
examples for the target-domain QA training.

We use a BERT model as the backbone of the
QVE. Specifically, we concatenate the context,
question and answer as input to the QVE, and use
BERT to encode the sequence (Devlin et al., 2019).

h = BERT [<CLS> q <ANS> a <SEP> c]

where q, a, c represent the question, answer, and
context, respectively. h ∈ RH denotes the hidden
representation of the input sequence derived from
the “<CLS>” token. <ANS> and <SEP> are two
special tokens used as delimiters.

In our preliminary experiments, we find that
adding the answer (start index and end index) prob-
abilities (ps, pe) by a pretrained QA model as addi-
tional features to the hidden representation h can
accelerate the QVE training convergence and lead
to better performance. Thus, we add these two fea-
tures (ps, pe) followed by linear transformations of
the original hidden representation, and then build a
linear classifier to output the question value.

h′ = σ(W2σ(W1h+ b1) + b2)

h′′ = σ(W3(h
′ ⊕ ps ⊕ pe) + b3)

vl =W4h
′′ + b4

where W1 ∈ RH1×H ,W2 ∈ RH2×H1 ,W3 ∈
RH3×H2 ,W4 ∈ RH3 , b1 ∈ RH1 , b2 ∈ RH2 , b3 ∈
RH3 , b4 ∈ R are trainable parameters of linear lay-
ers. σ is the activation function tanh.

Learning such a question value estimator is chal-
lenging because we do not have direct supervision
on the true value or usefulness of a synthetic ques-
tion. We discuss two straightforward baselines to
train QVE in Section 4.1, and a more advanced one
based on reinforcement learning in Section 4.2.

4.1 QVE Training: Two Baselines

Binary Classifier: One straightforward solution
is to treat QVE as a binary classifier and train it
based on the human-annotated (positive) and the
machine-synthesized (negative) QA pairs. Given
the scarcity of target-domain data, we first pretrain
the classifier on the source domain and then fine-
tune it on the target domain. More specifically, we
train a QG model on 70% of the source training
data and generate synthetic questions on the re-
maining 30% of the source training contexts. The
generated questions and the source-domain anno-
tated questions are used to train this binary classi-
fier. The classifier is then finetuned based on the
small set of target-domain annotations (positive)
and the samples synthesized on the same target-
domain contexts (negative).

However, not all of the generated questions are
bad. Simply treating all synthetic samples as neg-
atives may mislead the classifier. Thus, we loose
this assumption and introduce a ranking baseline.
Ranking Baseline: We assume that the quality of
human-annotated questions is not inferior than that
of machine-synthesized ones. Thus, we train QVE
based on a ranking triplet loss defined as follows:

Lr =
∑

max(0,m+ vs − vh)

where vs, vh are the estimated question values
of the machine-synthesized sample and human-
annotated sample. m is set to 0.15 as the margin.

The two baseline methods have two obvious
drawbacks: (1) they are trained to differentiate be-
tween human-annotated and machine-synthesized
samples, which is mismatched with our goal of
selecting high-quality samples among machine-
synthesized data; (2) similar as (Alberti et al., 2019;
Shakeri et al., 2020), the two baselines are not
trained with direct signals that can represent the
usefulness of a synthetic question. In the next
section, we will introduce a task-specific training
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Figure 2: Illustration of QVE training based on the direct feedback from QA. Specifically, in the forward pass,
QVE estimates the question values of a batch of synthetic questions and draws a Bernoulli sampling to select
questions. The selected questions are then used to finetune a pretrained QA model. The performance gain (before
and after the QA finetuning) on the target annotations is calculated as the reward for REINFORCED QVE training.

Algorithm 1 QVE REINFORCED Training
Input: pretrained QA model fθ; target synthetic
QA pairs Dt

syn; small target annotations Dt.
Hyperparameters: outer iterations Io, outer batch
size Bo, inner iterations In, inner batch size Bn,
QVE learning rate αo, QA learning rate αn.
Output: QVE eγ .

1: Randomly initialize eγ
2: Store θ0 ← θ (pretrained QA checkpoint)
3: for outer iteration = 1 to Io do
4: . 1 Sample a batch of synthetic QA pairs:
5: Sample D = {(cl, ql, al)}Bol=1 from Dt

syn

6: . 2 Estimate question values:
7: V = eγ(D)
8: . 3 Sample selection vector:
9: S ∼ Bernoulli(V)

10: . 4 Update QA on selected samples:
11: for inner iteration = 1 to In do
12: Sample {(cl, ql, al)}Bnl=1 ∼ D
13: θ ← θ − αn

Bn

∑Bn
l=1 sl · ∇θLqa

14: end for
15: . 5 Calculate QA gain as QVE reward:
16: rqve = reward_fn(fθ0 , fθ, D

t)
17: . 6 Update QVE based on Eq. 1:
18: γ ← γ − αo · ∇γLγ
19: Reset θ ← θ0
20: end for
21: return eγ

method, which directly uses the target-domain QA
feedback to optimize QVE.

4.2 QVE Training: Direct Feedback from QA
A well-trained QVE is expected to assign high val-
ues to synthetic questions that can improve the
target-domain QA performance. Therefore, an intu-
itive way to measure the value of a synthetic ques-
tion is to consider the downstream QA performance

gain (on the available target annotations) before and
after this question is included in the training set.
However, this “leave-one-out” formulation is com-
putationally expensive and time-consuming, given
that it can estimate the value of only one single
synthetic question in each forward pass. In light of
this challenge, we instead estimate question values
in a batch-wise fashion. Algorithm 1 and Figure 2
describe the learning process.

Generally speaking, we frame the QVE model
learning as a reinforcement learning problem
(Williams, 1992), and stimulate QVE to assign
higher values to more useful questions by using
performance-driven rewards. Specially, for a batch
of synthetic examples D = {(cl, ql, al)}Bol=1 in the
outer training iteration (Line 4-5), the QVE model
selects a subset of examples that are most likely to
boost the QA performance on the target domain,
based on its judgment on their values.

Mathematically, the decision-making outcome
is represented by the selection vector S =
(s1, s2, ..., sBo), where sl ∈ {0, 1} l = 1, ..., Bo
(Line 6-9). The whole batch-level decision making
policy πγ is described as follows:

vl = eγ(cl, ql, al)

sl ∼ Bernoulli(vl)

πγ(S|D) =
Bo∏
l=1

[vsll · (1− vl)
1−sl ],

where the selection of a certain example (cl, ql, al)
is formulated as sampling from a Bernoulli distri-
bution of probability vl (i.e., its estimated question
value). We adopt the Bernoulli sampling based
on the estimated value vl instead of setting a hard
threshold to encourage the policy exploration.

The model is rewarded based on how much per-
formance gain the selected examples could bring
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when they are used to train the target-domain QA
model. To this end, we finetune the QA model fθ
on the selected batch samples based on Lqa, which
typically is a cross-entropy loss:

Lqa = −
Bo∑
l

logP (al|ql, cl; θ)

In practice, to stabilize the QVE training, we
choose a large outer batch size Bo in each outer
training iteration. For finetuning the QA model, we
pick a relatively smaller inner batch size Bn and
repeat the training for In times, such that the QVE-
selected samples are fully utilized (Line 10-14).

The reward rqve is defined as the QA perfor-
mance gain on the target-domain annotations Dt

before (fθ0) and after (fθ) finetuning (Line 15-16),

rqve = reward_fn(fθ0 , fθ, D
t)

where reward_fn is Exact Match (EM) gain5.
Given the discrete and non-differentiable ques-

tion selection process, we update the QVE
model using the REINFORCE algorithm (Williams,
1992). Mathematically, we aim to minimize:

Lγ = − E
S∼πγ(·|D)

[rqve].

The gradient of the loss function is derived as:

∇γLγ = − E
S∼πγ

[rqve∇γ log πγ(S|D)]

= − E
S∼πγ

[rqve∇γ
Bo∑
l=1

log[vsll (1− vl)
1−sl ]].

(1)

Notably, to mitigate the instability in reinforcement
learning, we reset the QA model to its pretrained
checkpoint at the end of each outer iteration (Line
19), and keep the pretrained QG model unchanged.

After training QVE, we can use it to calculate
the question value for all the synthetic questions
on the target domain. Then we can select top K%
synthetic QA pairs as the training corpus to train
the target-domain QA model.

5 Experimental Setup

5.1 Datasets
We use datasets in the MRQA 2019 Shared Task
(Fisch et al., 2019), a popular challenge focus-
ing on generalization in reading comprehension.

5We also tried F1 gain and loss drop as the reward_fn
and the EM gain is slightly better than the other two.

Specifically, following Shakeri et al. (2020), we use
SQuAD 1.1 (Rajpurkar et al., 2016) as the source-
domain dataset. For the target-domain datasets, we
consider NewsQA (Trischler et al., 2017), Natural
Questions (NQ) (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018) and TriviaQA (Joshi
et al., 2017) as they are commonly used and have
sufficient contexts for the QG model to generate
synthetic samples. Since there is no test set avail-
able for each dataset, we use the original dev set as
the test set. Detailed descriptions of each dataset
are in Appendix A.

For the target-domain datasets, we assume all the
contexts and n annotated QA pairs in the original
training sets are available for training. We set n =
1000 (about 1%-1.5% of original training sets) as
default and discuss the impact of n in Section 6.2.

5.2 Implementation Details
We implement models using the Hugging
Face transformers (Wolf et al., 2020) li-
brary. We instantiate the QA model with
BERT-base-uncased (Devlin et al., 2019),
and the QG model with BART-base (Lewis
et al., 2020). For training QVE (Algorithm 1),
we use BERT-base-uncased model and set
H1 = H3 = H = 768 and H2 = 64 for linear
layers. To enable a large batch size Bo, we use
gradient checkpointing (Chen et al., 2016), a
technique used for reducing the memory footprint
when training deep neural networks. We set
Io = 2000, Bo = 80, In = 20, Bn = 4, and
αo = αn = 3e−5. To select the best QVE
checkpoint, we pick the one that achieves the
highest reward on the target annotations or the one
that leads to the lowest QA training loss. When
training (finetuning) QA and QG models (either on
source or target domain), we set training epochs as
2 and 3 respectively. Other hyperparameters are
set as default in the transformers library.

5.3 Compared Baselines
We evaluate the following QA models built on dif-
ferent training data:
(1) Source Only Baseline: we train a QA model
on the source-domain data.
(2) Source + Target Annotations Baseline: we
further finetune the “(1) Source Only Baseline” on
the available target annotated QA pairs.
(3) QG Baseline (no filtering): we first pretrain
a QG model on the source-domain data and fine-
tune it on the available target annotations. The
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Different Filtering Methods
Dataset NoFilter RTC LM QVE
NewsQA 74,160 33,756 44,485 44,485
NQ 104,071 62,888 62,443 62,443
HotpotQA 72,928 46,273 43,757 43,757
TriviaQA 61,688 26,361 37,013 37,013

Table 1: Number of synthetic examples selected by dif-
ferent methods. NoFilter: QG baseline (no filtering);
RTC: Roundtrip Filtering; LM: LM Filtering.

QG model is then used to generate synthetic QA
samples on the target contexts. We finetune a QA
model sequentially on all available data with the or-
der of “source→target synthetic→target annotated”
for all the datasets except TriviaQA6. The same QA
finetuning strategy will also be used for (4)-(8).
(4) RoundTrip Filtering (Alberti et al., 2019): we
use the “(2) Source + Target Annotation Baseline”
to extract answers for target synthetic questions
and select the ones, whose extracted answers are
correct, as the target synthetic training corpus.
(5) LM Filtering (Shakeri et al., 2020): we use
the log likelihood scores of synthetic questions
produced by the QG model in (3) as the filtering
criterion. We select top K% samples as the target
synthetic training corpus.
(6) QVE (binary classifier): we train QVE as a
binary classifier (Section 4.1) and then use it to
select top K% target synthetic samples.
(7) QVE (ranking baseline): we train QVE based
on a ranking function (Section 4.1), and then use it
to select top K% synthetic samples.
(8) QVE (RL): we train QVE based on the direct
feedback from target annotations using RL (Sec-
tion 4.2), and then use it to select top K% target
synthetic samples.
(9) Fully-supervised Baseline: we train a QA
model on the original target training data. Note
that we report the fully-supervised performance
here only as the reference and (1)-(8) are not di-
rectly comparable to this.

The number of the selected synthetic examples
of RoundTrip Filtering is determined by the QA
model and varies for each dataset. For LM Filter-
ing and QVE, we select top K% (K=60) samples
among all synthetic ones and discuss the impact of
the synthetic dataset size in Appendix B. We show
the statistics of filtered datasets in Table 1.

6For the TriviaQA dataset, we merge the target synthetic
and target annotated dataset into one training file since directly
finetuning on the target annotated dataset would hurt the QA
performance based on our preliminary experiments.

6 Results

6.1 Overall Results

We first discuss the domain adaptation results
on the 4 target-domain QA datasets under semi-
supervised setting where n = 1, 000 target-domain
QA examples are available. Table 2 shows the over-
all results of different methods. We summarize key
findings as follows:
(1) Compared with RoundTrip and LM Filtering,
our QVE (RL) achieves the best performance.
This is because both baselines are not specifically
trained to select useful examples for improving QA
performance on the target domain. Our QVE, on
the contrary, is trained with a signal that directly
reflects the QA performance, which can more accu-
rately estimate the question value and select useful
pairs for target-domain QA.
(2) Two QVE baselines (binary classifier and rank-
ing baseline) can select some useful questions and
achieve comparable performance with RoundTrip
and LM Filtering. However, due to the lack of di-
rect QA evaluation feedback, they underperform
QVE (RL), which demonstrates the usefulness of
the QA feedback during training QVE.

6.2 How many target QA pairs do we need?

In Table 2, we showed that with n (n=1,000) target
annotated QA pairs and the selected high-quality
synthetic QA pairs, we can finetune a better QA
model on the target domain. In this section, we
discuss the influence of n on the target-domain QA
performance. The results are shown in Figure 3,
and interesting findings include:

(1) In general, the performance of all models
improves as more target annotations are used. This
is intuitive as more annotated pairs can improve
both QA and QG training. With a better QG model,
the quality of the synthetic questions is improved,
which could also lead to better QA models.

(2) Our QVE model can often outperform the
QG baseline and the filtering baselines. With an
optimization objective considering the downstream
QA performance, QVE can select more useful ques-
tions for improving target-domain QA.

(3) The improvement of our QVE compared with
baselines is usually larger when more annotated
QA pairs are available. This is because our QVE
training (with RL) relies on the QA feedback based
on the available annotated pairs. With more anno-
tated pairs, the feedback can be more accurate, thus
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No. Methods
NewsQA NQ HotpotQA TriviaQA

EM F1 EM F1 EM F1 EM F1
(1) Source Only Baseline 40.2 56.2 45.2 59.1 43.3 60.3 49.5 59.3
(2) Source + Target Annotations Baseline 43.7 59.8 54.2 68.2 51.7 69.2 55.7 62.0
(3) QG Baseline (no filtering) 45.3 60.7 60.5 72.6 52.9 70.0 58.3 63.9
(4) +RoundTrip Filtering (Alberti et al., 2019) 45.4 60.8 58.6 71.2 53.9 70.5 58.7 64.4
(5) +LM Filtering (Shakeri et al., 2020) 45.3 61.2 60.0 72.1 53.9 70.5 56.0 61.7
(6) +QVE (binary classifier) 45.2 60.7 60.1 72.3 53.7 70.4 58.2 63.8
(7) +QVE (ranking baseline) 45.8 61.3 60.6 72.8 53.9 70.9 58.4 63.9
(8) +QVE (RL) 46.2 61.6 61.3 73.2 54.5 71.7 62.3 68.5
(9) Fully-supervised Baseline 50.0 64.6 65.8 78.1 56.8 73.9 64.6 70.3

Table 2: Semi-supervised domain adaptation performance of different models where 1,000 target-domain annota-
tions (around 1-1.5% of the original training data) are used.

100 500 1000 5000 10000
Size of Target Annotations

56

58

60

62

64

66

F1

Fully-supervised: 64.6 (64K)

59.7
61.1 61.6

63.2
64.4

NewsQA

100 500 1000 5000 10000
Size of Target Annotations

65

70

75

80 Fully-supervised: 78.1 (104K)

71.0
72.1

73.2
74.8

76.5

NaturalQuestions

100 500 1000 5000 10000
Size of Target Annotations

66

68

70

72

74

76
Fully-supervised: 73.9 (72K)

68.5

70.0

71.7

73.4
74.1

HotpotQA

100 500 1000 5000 10000
Size of Target Annotations

60
62
64
66
68
70
72

Fully-supervised: 70.3 (61K)

62.0

64.9

68.5
69.3

70.2
TriviaQA

Source+Target Annotations QG Baseline Roundtrip LM Filtering QVE (RL)

Figure 3: Impact of the number of target annotated QA pairs. We also show the fully-supervised performance (and
#train) as the reference. With 10K target annotations (around 15% of the full training set), our method can achieve
comparable performance to the supervised ones (as shown at the top of each sub-figure).

leading to a better QVE for selecting more useful
synthetic questions.

(4) With 10,000 (around 15% of the original
training set) target annotations and the synthetic
questions selected by QVE, we can achieve compa-
rable performance with the fully-supervised base-
line. This indicates that one can save more anno-
tation budgets when building a target-domain QA
model based on our QVE in practice.

6.3 Experiments with Larger Models

The results presented in the previous sections are
based on BERT-base and BART-base. In this
section, we test whether our QVE can still be effec-
tive when working with larger models, and select
BERT-Large and BART-Large as QA and QG
model respectively. When changing the QA (QG)
model to its larger alternative, we keep the other
one as the base model to better show the difference.
We use NaturalQuestions (NQ) and HotpotQA as
representative datasets, and show results on them
(with 1,000 target annotations). As shown in Ta-
ble 3, our QVE model can still help improve the
performance for larger instantiations of QG/QA.

Setups Methods
NQ HotpotQA

EM F1 EM F1

QA:Large Model
QG:Base Model

Source Only 50.7 65.0 46.2 64.0
+ Target Annot. 58.7 72.1 54.3 72.2
+ QG Baseline 61.6 73.4 55.5 72.5
+ Roundtrip 59.8 71.9 55.9 72.8
+ LM Filtering 60.6 72.5 55.7 72.7
+ QVE (RL) 62.4 74.5 56.3 73.4

QA:Base Model
QG:Large Model

Source Only 45.2 59.1 43.3 60.3
+ Target Anno. 54.2 68.2 51.7 69.2
+ QG Baseline 61.0 72.8 53.2 70.9
+ Roundtrip 59.9 71.7 54.1 71.1
+ LM Filtering 60.6 72.2 54.2 71.2
+ QVE (RL) 62.1 73.8 55.2 72.0

Table 3: Results on larger capacity QG and QA models.

6.4 Human Study: Why can QVE help QA?

In this section, we aim to gain a better understand-
ing of why QVE helps QA and verify that QVE
selects more semantically matched and non-trivial
questions, thus benefiting downstream QA.

Since automatic metrics cannot often reflect the
actual quality of the question selections, we sample
50 generated examples from each target-domain
dataset (200 in total), and ask three human anno-
tators to label whether a generated QA pair is se-
mantically matched (i.e., can be selected to train
QA) and (if yes) whether it asks about a simple
fact. To lower the annotation bias in determining
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Question ID
in the dataset Context Question Human Labels Selected by models?

Matched Non-
Trivial Roundtrip LM QVE

(Ours)

NewsQA

./cnn/stories/
6573f73a89
7ec00e2c03
7f959d832d
04aa1a5ab3
.story#1

...Police arrested alleged ringleaders
Deborah Turbiville and her husband,
Charlie, as part of a two-year investigation,
the affiliate reported. Turbiville called
herself the "Heidi Fleiss of Houston,"
referring to a woman who was dubbed
the <ANS>"Hollywood Madam"
<ANS>for providing call girls to
famous and wealthy clients, police said.

What was the
nickname given
to the woman
who allegedly
provided call
girls for
prostitution?

1 1 0 0 1

NQ

aeee2c92
647541da
963bdb80
c5efc375

...I ’m singing ’ Pretending someone else
can come and save me from myself ’ during
it because it ’s supposed to feel like an
apology letter , as though I ’m moving on
but I want people to remember the goodthings
and not the bad things. <ANS>A lot of the song
is about humility <ANS>. ”...

What is a lot
of the song
about?

1 0 1 1 0

Table 4: Two synthetic questions labeled by human and different question selection models.

whether a generated question asks about a simple
fact or not, we provide the ground-truth question
(the question in the original dataset created by hu-
mans) as a reference. If the generated question
is simpler than the ground truth, then it would be
marked as “trivial”; otherwise, it is a “non-trivial”
one. Three annotators work independently and we
adopt the majority vote for deciding the final labels
of a generated QA pair (if disagreement appears).

We calculate the precision, recall and F1 be-
tween predictions7 by each filtering method and
human labels (for both “semantically matched” and
“non-trivial”). As shown in Table 5, though three
methods obtain a similar precision on all sampled
questions, our method has a better recall, especially
on the “non-trivial” questions. This means that
our method can select more semantically matched
and non-trivial questions, which explains why it
leads to better QA performance. We also show
some real cases in Figure 1 and Table 4 to further
illustrate this point. For example, our QVE se-
lects “What was the nickname given to the woman
who allegedly provided call girls for prostitution?”
while the baselines do not pick this semantically
matched and non-trivial question. For another ex-
ample, “Who is the founder of CNN”, both base-
lines select it while our QVE filters it out since
such a simple question would probably not help
further improve QA.

7 Conclusion

We propose a question value estimator to estimate
the usefulness of synthetic questions and select
useful ones for improving target-domain QA train-

7We treat it as a binary classification problem here: if a
question is selected, the prediction is 1; 0 otherwise.

Methods
Semantically-Matched Non-trivial

P R F1 P R F1
RoundTrip 87.9 60.0 71.2 82.6 47.5 60.3
LM Filtering 85.7 64.6 73.6 78.9 51.7 62.5
QVE(RL) 88.2 70.0 78.0 83.3 59.3 69.3

Table 5: Agreement with question selection by humans.

ing. We optimize QVE with the target-domain QA
performance gain after adding the selected ques-
tions into training. Our comprehensive experiments
demonstrate the superiority of QVE compared with
other question selection methods. Additionally, us-
ing the synthetic questions selected by QVE and
only around 15% of the human annotated data on
each target domain, we can achieve comparable
performance to the fully-supervised baselines.
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Figure A1: Impact of synthetic dataset size.

A Details of Datasets

Specifically, following Shakeri et al. (2020), we
use SQuAD 1.1 (Rajpurkar et al., 2016), a large
reading comprehension dataset that consists of
100k questions on more than 500 articles from
Wikipedia, as the source-domain dataset. For the
target-domain datasets, we consider the following
4 datasets since they are commonly used and have
sufficient contexts to train the models.
NewsQA (Trischler et al., 2017) consists of ques-
tions and answers based on a set of over 10k news
articles from CNN News.
Natural Questions (NQ) (Kwiatkowski et al.,
2019) contains questions extracted from Google
user search queries and passages from Wikipedia.
HotpotQA (Yang et al., 2018) is a multi-hop ques-
tion answering dataset based on Wikipedia pas-
sages.
TriviaQA (Joshi et al., 2017) includes QA pairs au-
thored by trivia enthusiasts, as well as evidence doc-
uments independently gathered from Web search
results and Wikipedia articles.

B Impact of Synthetic Dataset Size

In Figure A1, we show how the synthetic dataset
size (i.e., the number of selected QA pairs) impacts
the QA performance, based on our QVE (RL) filter-
ing. As we expect, at the beginning, the target QA
performance improves when more synthetic data
is added to the training set. However, the perfor-
mance reaches the peak at 60-70% and then goes
down. This is reasonable since adding less valu-
able QA pairs from the noisy synthetic data will
hurt the QA model training. We suggest 60%-70%
(50K-70K QA pairs) for setting the synthetic data
size in practical.
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