@inproceedings{du-etal-2022-understanding,
title = "Understanding Gender Bias in Knowledge Base Embeddings",
author = "Du, Yupei and
Zheng, Qi and
Wu, Yuanbin and
Lan, Man and
Yang, Yan and
Ma, Meirong",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.98",
doi = "10.18653/v1/2022.acl-long.98",
pages = "1381--1395",
abstract = "Knowledge base (KB) embeddings have been shown to contain gender biases. In this paper, we study two questions regarding these biases: how to quantify them, and how to trace their origins in KB? Specifically, first, we develop two novel bias measures respectively for a group of person entities and an individual person entity. Evidence of their validity is observed by comparison with real-world census data. Second, we use the influence function to inspect the contribution of each triple in KB to the overall group bias. To exemplify the potential applications of our study, we also present two strategies (by adding and removing KB triples) to mitigate gender biases in KB embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="du-etal-2022-understanding">
<titleInfo>
<title>Understanding Gender Bias in Knowledge Base Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yupei</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanbin</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Man</namePart>
<namePart type="family">Lan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meirong</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowledge base (KB) embeddings have been shown to contain gender biases. In this paper, we study two questions regarding these biases: how to quantify them, and how to trace their origins in KB? Specifically, first, we develop two novel bias measures respectively for a group of person entities and an individual person entity. Evidence of their validity is observed by comparison with real-world census data. Second, we use the influence function to inspect the contribution of each triple in KB to the overall group bias. To exemplify the potential applications of our study, we also present two strategies (by adding and removing KB triples) to mitigate gender biases in KB embeddings.</abstract>
<identifier type="citekey">du-etal-2022-understanding</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.98</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.98</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1381</start>
<end>1395</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding Gender Bias in Knowledge Base Embeddings
%A Du, Yupei
%A Zheng, Qi
%A Wu, Yuanbin
%A Lan, Man
%A Yang, Yan
%A Ma, Meirong
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F du-etal-2022-understanding
%X Knowledge base (KB) embeddings have been shown to contain gender biases. In this paper, we study two questions regarding these biases: how to quantify them, and how to trace their origins in KB? Specifically, first, we develop two novel bias measures respectively for a group of person entities and an individual person entity. Evidence of their validity is observed by comparison with real-world census data. Second, we use the influence function to inspect the contribution of each triple in KB to the overall group bias. To exemplify the potential applications of our study, we also present two strategies (by adding and removing KB triples) to mitigate gender biases in KB embeddings.
%R 10.18653/v1/2022.acl-long.98
%U https://aclanthology.org/2022.acl-long.98
%U https://doi.org/10.18653/v1/2022.acl-long.98
%P 1381-1395
Markdown (Informal)
[Understanding Gender Bias in Knowledge Base Embeddings](https://aclanthology.org/2022.acl-long.98) (Du et al., ACL 2022)
ACL
- Yupei Du, Qi Zheng, Yuanbin Wu, Man Lan, Yan Yang, and Meirong Ma. 2022. Understanding Gender Bias in Knowledge Base Embeddings. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1381–1395, Dublin, Ireland. Association for Computational Linguistics.