@inproceedings{haque-etal-2022-pixie,
title = "Pixie: Preference in Implicit and Explicit Comparisons",
author = "Haque, Amanul and
Garg, Vaibhav and
Guo, Hui and
Singh, Munindar",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-short.13",
doi = "10.18653/v1/2022.acl-short.13",
pages = "106--112",
abstract = "We present Pixie, a manually annotated dataset for preference classification comprising 8,890 sentences drawn from app reviews. Unlike previous studies on preference classification, Pixie contains implicit (omitting an entity being compared) and indirect (lacking comparative linguistic cues) comparisons. We find that transformer-based pretrained models, finetuned on Pixie, achieve a weighted average F1 score of 83.34{\%} and outperform the existing state-of-the-art preference classification model (73.99{\%}).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="haque-etal-2022-pixie">
<titleInfo>
<title>Pixie: Preference in Implicit and Explicit Comparisons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amanul</namePart>
<namePart type="family">Haque</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vaibhav</namePart>
<namePart type="family">Garg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Munindar</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Pixie, a manually annotated dataset for preference classification comprising 8,890 sentences drawn from app reviews. Unlike previous studies on preference classification, Pixie contains implicit (omitting an entity being compared) and indirect (lacking comparative linguistic cues) comparisons. We find that transformer-based pretrained models, finetuned on Pixie, achieve a weighted average F1 score of 83.34% and outperform the existing state-of-the-art preference classification model (73.99%).</abstract>
<identifier type="citekey">haque-etal-2022-pixie</identifier>
<identifier type="doi">10.18653/v1/2022.acl-short.13</identifier>
<location>
<url>https://aclanthology.org/2022.acl-short.13</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>106</start>
<end>112</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pixie: Preference in Implicit and Explicit Comparisons
%A Haque, Amanul
%A Garg, Vaibhav
%A Guo, Hui
%A Singh, Munindar
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F haque-etal-2022-pixie
%X We present Pixie, a manually annotated dataset for preference classification comprising 8,890 sentences drawn from app reviews. Unlike previous studies on preference classification, Pixie contains implicit (omitting an entity being compared) and indirect (lacking comparative linguistic cues) comparisons. We find that transformer-based pretrained models, finetuned on Pixie, achieve a weighted average F1 score of 83.34% and outperform the existing state-of-the-art preference classification model (73.99%).
%R 10.18653/v1/2022.acl-short.13
%U https://aclanthology.org/2022.acl-short.13
%U https://doi.org/10.18653/v1/2022.acl-short.13
%P 106-112
Markdown (Informal)
[Pixie: Preference in Implicit and Explicit Comparisons](https://aclanthology.org/2022.acl-short.13) (Haque et al., ACL 2022)
ACL
- Amanul Haque, Vaibhav Garg, Hui Guo, and Munindar Singh. 2022. Pixie: Preference in Implicit and Explicit Comparisons. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 106–112, Dublin, Ireland. Association for Computational Linguistics.