@inproceedings{xu-etal-2022-s4,
title = "S$^4$-Tuning: A Simple Cross-lingual Sub-network Tuning Method",
author = "Xu, Runxin and
Luo, Fuli and
Chang, Baobao and
Huang, Songfang and
Huang, Fei",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-short.58/",
doi = "10.18653/v1/2022.acl-short.58",
pages = "530--537",
abstract = "The emergence of multilingual pre-trained language models makes it possible to adapt to target languages with only few labeled examples. However, vanilla fine-tuning tends to achieve degenerated and unstable results, owing to the Language Interference among different languages, and Parameter Overload under the few-sample transfer learning scenarios. To address two problems elegantly, we propose S$^4$-Tuning, a Simple Cross-lingual Sub-network Tuning method. S$^4$-Tuning first detects the most essential sub-network for each target language, and only updates it during fine-tuning.In this way, the language sub-networks lower the scale of trainable parameters, and hence better suit the low-resource scenarios.Meanwhile, the commonality and characteristics across languages are modeled by the overlapping and non-overlapping parts to ease the interference among languages.Simple but effective, S$^4$-Tuning gains consistent improvements over vanilla fine-tuning on three multi-lingual tasks involving 37 different languages in total (XNLI, PAWS-X, and Tatoeba)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2022-s4">
<titleInfo>
<title>S⁴-Tuning: A Simple Cross-lingual Sub-network Tuning Method</title>
</titleInfo>
<name type="personal">
<namePart type="given">Runxin</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fuli</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baobao</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Songfang</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The emergence of multilingual pre-trained language models makes it possible to adapt to target languages with only few labeled examples. However, vanilla fine-tuning tends to achieve degenerated and unstable results, owing to the Language Interference among different languages, and Parameter Overload under the few-sample transfer learning scenarios. To address two problems elegantly, we propose S⁴-Tuning, a Simple Cross-lingual Sub-network Tuning method. S⁴-Tuning first detects the most essential sub-network for each target language, and only updates it during fine-tuning.In this way, the language sub-networks lower the scale of trainable parameters, and hence better suit the low-resource scenarios.Meanwhile, the commonality and characteristics across languages are modeled by the overlapping and non-overlapping parts to ease the interference among languages.Simple but effective, S⁴-Tuning gains consistent improvements over vanilla fine-tuning on three multi-lingual tasks involving 37 different languages in total (XNLI, PAWS-X, and Tatoeba).</abstract>
<identifier type="citekey">xu-etal-2022-s4</identifier>
<identifier type="doi">10.18653/v1/2022.acl-short.58</identifier>
<location>
<url>https://aclanthology.org/2022.acl-short.58/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>530</start>
<end>537</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T S⁴-Tuning: A Simple Cross-lingual Sub-network Tuning Method
%A Xu, Runxin
%A Luo, Fuli
%A Chang, Baobao
%A Huang, Songfang
%A Huang, Fei
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F xu-etal-2022-s4
%X The emergence of multilingual pre-trained language models makes it possible to adapt to target languages with only few labeled examples. However, vanilla fine-tuning tends to achieve degenerated and unstable results, owing to the Language Interference among different languages, and Parameter Overload under the few-sample transfer learning scenarios. To address two problems elegantly, we propose S⁴-Tuning, a Simple Cross-lingual Sub-network Tuning method. S⁴-Tuning first detects the most essential sub-network for each target language, and only updates it during fine-tuning.In this way, the language sub-networks lower the scale of trainable parameters, and hence better suit the low-resource scenarios.Meanwhile, the commonality and characteristics across languages are modeled by the overlapping and non-overlapping parts to ease the interference among languages.Simple but effective, S⁴-Tuning gains consistent improvements over vanilla fine-tuning on three multi-lingual tasks involving 37 different languages in total (XNLI, PAWS-X, and Tatoeba).
%R 10.18653/v1/2022.acl-short.58
%U https://aclanthology.org/2022.acl-short.58/
%U https://doi.org/10.18653/v1/2022.acl-short.58
%P 530-537
Markdown (Informal)
[S4-Tuning: A Simple Cross-lingual Sub-network Tuning Method](https://aclanthology.org/2022.acl-short.58/) (Xu et al., ACL 2022)
ACL
- Runxin Xu, Fuli Luo, Baobao Chang, Songfang Huang, and Fei Huang. 2022. S4-Tuning: A Simple Cross-lingual Sub-network Tuning Method. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 530–537, Dublin, Ireland. Association for Computational Linguistics.