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Abstract

Interpolation-based regularisation methods
such as Mixup, which generate virtual training
samples, have proven to be effective for vari-
ous tasks and modalities. We extend Mixup
and propose DMIX, an adaptive distance-
aware interpolative Mixup that selects samples
based on their diversity in the embedding
space. DMIX leverages the hyperbolic space
as a similarity measure among input samples
for a richer encoded representation. DMIX
achieves state-of-the-art results on sentence
classification over existing data augmentation
methods on 8 benchmark datasets across
English, Arabic, Turkish, and Hindi languages
while achieving benchmark F1 scores in 3
times less number of iterations. We probe the
effectiveness of DMIX in conjunction with
various similarity measures and qualitatively
analyze the different components. DMIX
being generalizable, can be applied to various
tasks, models and modalities.

1 Introduction

Deep learning models, though effective for many
applications are prone to overfitting in absence of
sufficient training data. Data augmentation tech-
niques can efficiently use this limited training data
(Liu et al., 2021; Shi et al., 2020). Interpolation-
based augmentation techniques such as Mixup
(Zhang et al., 2018) have shown improved perfor-
mance across different modalities. Mixup over
latent representations of inputs leads to further im-
provements (Chen et al., 2020a). However, Mixup
does not account for the spatial distribution of
dataset samples, but choosing samples randomly
for interpolation-based augmentation.

While randomization in Mixup helps, augment-
ing Mixup’s sample selection strategy with logic
based on the similarity of the samples to be mixed
can lead to improved generalization (Chen et al.,

∗Equal contribution.

Figure 1: Overview of DMIX showing the sample se-
lection based on the hyperbolic distance and using dis-
tance matrix M to perform interpolation.

2020b). The relative spatial position of samples can
be leveraged to produce more suitable synthetic
inputs for training underlying models (Xu et al.,
2021). Further, natural language possesses hierar-
chical structures and complex geometries, which
the standard Euclidean space cannot capture effec-
tively (Ganea et al., 2018). Hyperbolic geometry
presents a solution in defining similarity between
latent representations (Tifrea et al., 2019).

We propose DMIX, an adaptive distance-aware
interpolative data augmentation method. Instead of
choosing random inputs from the complete training
distribution as in the case of Mixup, DMIX sam-
ples instances based on the (dis)similarity between
latent representations of samples in the hyperbolic
space. Furthermore, DMIX performs interpolations
with trainable pair-wise parameters derived from
the spatial distribution of the samples rather than
sampling mixing ratios randomly from standard
distributions, making it adaptive for pair-wise in-
terpolation. Our contributions are:
• We propose DMIX, a novel adaptive distance-

aware interpolative regularization method de-
veloped over the spatial distribution of dataset
sampled in the hyperbolic space.

• DMIX outperforms existing interpolative data
augmentation baselines for 8 benchmark sen-
tence classification tasks across four languages.

• DMIX achieves threshold F1 scores with 3 times
less number of iterations than random Mixup
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while being generalizable across tasks, datasets,
and modalities.

2 Methodology

We present an overview of DMIX in Figure 1. We
first introduce interpolative Mixup (§2.1), and then
formulate DMIX by leveraging the relative sample
distribution in the hyperbolic space (§2.2).

2.1 Interpolative Mixup
Given two data samples xi, xj ∈ X with labels
yi, yj ∈ Y , and i, j ∈ [1, N ], Mixup (Zhang et al.,
2018) uses linear interpolation with mixing ratio r
to generate the synthetic sample x′ and correspond-
ing mixed label y′,

x′ = Mixup(xi, xj) = r ·xi + (1− r)·xj
y′ = Mixup(yi, yj) = r ·yi + (1− r)·yj

(1)

Interpolative Mixup (Chen et al., 2020a) performs
linear interpolation over the latent representations
of models. Let fθ(·) be a model with parameters
θ having K layers, fθ,n(·) denotes the n-th layer
of the model and hn is the hidden space vector at
layer n for n ∈ [1,K] and h0 denotes the input
vector. To perform interpolative Mixup at a layer
k∼ [1,K], we calculate the latent representations
separately for the inputs for layers before the k-th
layer. For input sample xi, we let hin denote the
hidden state representations at layer n,

hin=fθ,n(h
i
n−1), n ∈ [1, k]

hjn=fθ,n(h
j
n−1), n ∈ [1, k]

(2)

We then perform Mixup over individual hidden
state representations hik, h

j
k from layer k as,

hk=Mixup(hik, h
j
k)=r ·h

i
k + (1− r)·hjk (3)

The mixed hidden representation hk is used as the
input for the continuing forward pass,

hn=fθ,n(hn−1); n ∈ [k + 1,K] (4)

2.2 DMIX: Distance-aware Mixup
Though Mixup helps generalize models better, it
selects samples completely randomly for interpo-
lation. Augmenting the sample selection strategy
with intelligence derived from the spatial distri-
bution of the samples to be mixed can lead to
improved generalization. Hence, we formulate
distance-aware Mixup, or DMIX. To perform
DMIX, we first create a learnable matrix MNxN ,
which is used to perform Mixup between pair of

samples. We use the hyperbolic distance as our sim-
ilarity metric to initialize matrix M as it effectively
captures the hierarchical structures and complex ge-
ometries that natural language text possesses. The
hyperbolic distance Dh between sentence embed-
dings ei = fθ(xi) and ej = fθ(xj) is,

Dh(ei, ej) = 2 tan−1(‖(−ej)⊕ ei‖) (5)

Here, ⊕ represents the Möbius addition ⊕ for a
pair of points x, y∈B, defined as,

x⊕ y :=
(1 + 2〈x, y〉+ ||y||2)x+ (1− ||x||2)y

1 + 2〈x, y〉+ ||x||2||y||2 (6)

, 〈., .〉, || · || are Euclidean inner product and norm.
We initialize M using hyperbolic distance Dh

and normalize it row wise to scale the values,

Mij = Dh(ei, ej); Mi =
Mi

max(Mi)
(7)

Using learnable matrix M, we change the Mixup
formulation (Equation 1) for samples i and j and
define DMixup as,

DMixup(xi, xj) = (1−Mij) ∗ xi +Mij ∗ xj (8)

DMIX is defined for one sample as compared
to Mixup which is defined for two samples. To
perform DMIX over a sample xi, we create a set Si
of the most diverse samples in the dataset based on
a threshold. To create this set, we select samples
having Mij above a threshold τ ,

Si = {xk|xk ∈ X,Mik ≥ τ} (9)

We use τ to control the diversity of the selected
samples. τ = T ∗ max(Mi) at each step of the
training, where T is a hyperparameter ∈ (0, 1). To
perform DMIX, we operate DMixup over samples
xi and a random sample xj ∈ Si,

DMIX(xi)=DMixup(xi, xj), xj ∈ Si (10)

We replace the Mixup operation in Equation 3
with the DMIX operation in Equation 10 to evalu-
ate DMIX. The final hidden state output hK is
passed through a multi-layer perceptron (MLP)
gφ for classification. We optimize the network
using KL Divergence loss between the final out-
put gφ(hK) and mixed label y′ = DMixup(yi, yj),
which also trains matrix M end-to-end.

3 Experimental Setup

We evaluate DMIX on standard English, GLUE,
and multi-lingual datasets in 4 languages (Table 1).

607



Dataset Language Classes Samples

TRAC (2020) English 3 5,329
TREC-Coarse (2002) English 6 5,952
TREC-Fine (2002) English 47 5,952
CoLA (2018) English 2 10,657
SST-2 (2013) English 2 12,693

AHS (2018) Arabic 2 3,950
TTC (2017) Turkish 6 3,600
HASOC (2019) Hindi 2 5,983

Table 1: Datasets, languages, # classes and # samples.

3.1 Training Setup

DMIX is performed over a layer randomly sampled
from all the layers of the model. We use a learning
rate of 2e-5, batch size of 8 and a weight decay of
0.01 for all the combinations, DMIX, DMix-NT,
and Mixup. For the baselines, we sample r from
a beta distribution following previous works. All
hyperparameters were selected based on validation
F1-score. We use BERT for English and mBERT
for other languages as the base model fθ for our ex-
periments, and their [CLS] token representation as
the sentence embeddings to calculate the distances
(Equation 5). Due to resource constraints, we only
use 10, 000 samples of SST-2 for training, but do
not change the validation and test split.

3.2 Evaluation

We compare DMIX with word-mixup (WMix) and
sentence-mixup (SMix) (Guo et al., 2019), and
interpolative Mixup (TMix) (Chen et al., 2020a)1.
F1 We use F1 score to evaluate the classification
performance of DMIX and its variants.
Diversity Following Gontijo-Lopes et al. (2020),
we use diversity defined as the number of training
steps required to obtain a benchmark F1 score.

4 Results and Analysis

4.1 Performance Comparison and Ablation

We observe that distance-constrained Mixup signif-
icantly (p < 0.01) outperforms all baselines across
the datasets (Table 2) validating that similarity-
based sample selection improves model perfor-
mance, likely owing to enhanced diversity or mini-
mizing sparsification across tasks. Within distance-
constrained Mixup, we observe that DMIX, the
hyperbolic distance variant outperforms Euclidean
distance (Euc-DMIX) measures (Table 3). This
suggests that the hyperbolic space is more capable
of capturing the complex hierarchical information

1We provide an extended comparison with other baselines
in the Appendix.

Dataset fθ +WMix +SMix +TMix +DMix

TRAC 72.52 73.52 74.20 75.41 78.67∗
TREC-Coarse 97.08 96.10 96.59 97.52 97.80∗
TREC-Fine 86.86 87.13 87.89 90.16 91.14∗
CoLA 84.91 84.95 85.14 85.30 95.94∗
SST-2 90.32 91.34 91.21 91.66 92.44∗

AHS 66.39 67.10 68.30 70.19 74.98∗
TTC 91.10 90.18 91.15 91.30 92.16∗
HASOC 76.13 77.24 76.30 77.44 80.27∗

Table 2: Performance comparison in terms of F1 score
of baseline methods with DMIX (average of 10 runs). ∗

shows significant (p<0.01) improvement over TMix.

Dataset TMix Euc-DMIX
NT

DMIX
NT Euc-DMIX DMIX

TRAC 75.41 76.52∗ 78.16∗ 77.02∗ 78.67∗�
TREC-Coarse 97.52 97.55 97.66 97.53 97.80∗
TREC-Fine 90.16 89.70 90.20 89.12 91.14∗�
CoLA 85.30 85.73∗ 86.81∗ 86.23∗ 95.94∗�
SST-2 91.05 91.15 92.31∗ 91.92∗ 92.44∗�

AHS 70.19 72.23∗ 74.65∗ 72.41∗ 74.98∗�
TTC 91.30 90.66 91.40 91.50 92.16∗�
HASOC 77.44 78.96∗ 79.96∗ 79.38∗ 80.27∗�

Table 3: Ablation study of DMIX with distance con-
straints using different similarity techniques (average
of 10 runs). Improvements are shown with blue . ∗,
� show significant (p < 0.01) improvement over TMix
and DMIX-NT, respectively.

present in sentence representations, leading to bet-
ter comparisons and sample selection. We also
compare DMIX and its variants with their non-
trainable versions (denoted by -NT in Table 3).
These methods have matrix M fixed, and only se-
lect samples based on their relative positions in
the embedding space. We observe that for all vari-
ants, the non-trainable counterparts perform poorer
than the trainable counterparts, indicating that M
is able to capture sample-specific information rel-
ative to other samples, generating more suitable
sample selection and mixing ratio for performing
interpolative data augmentation.

4.2 Analyzing Convergence of DMIX

We validate "Does DMIX converge faster than
TMix?". We observe that across all datasets, DMIX

achieves a benchmark F1 score in less number
of training iterations compared to TMix (Figure
2). Since DMIX selects samples for Mixup in
an adaptive distance-aware manner, it is able to
generate more diverse and suitable interpolations
leading to faster generalization of the underlying
base model. DMIX requires 3 times less number
of iterations on an average compared to TMix, or
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Figure 2: Diversity comparison of TMix with DMIX
and DMIX-NT as number of training steps required to
achieve benchmark F1 scores (TRAC:75, HASOC:77).

random Mixup, and hence is more generalizable
and effective across languages.

4.3 Impact of Sample Selection and
Distance-Aware Mixing Ratio

Model TTC TREC-Coarse AHS

TMix 91.30 97.52 70.19
+ M-Ratio 91.66 96.90 72.43
+ M-Threshold 92.02 97.10 73.31
DMix 92.16 97.80 74.98

Table 4: Ablation study over matrix M (F1 scores). M-
Ratio denotes M is used only for performing mixup
and sample selection is random. M-Threshold denotes
that M is used to select samples based on the distance
and mixup is performed with a random ratio.

We probe the individual impact of using matrix M
for distance-based sample selection and using it for
performing mixup in Table 4. We observe that both
the applications of matrix M lead to improvements
over TMix. Using matrix M for sample selection
obtains larger improvements compared to using it
as the ratio for performing mixup. This suggests
that the selection of inputs for interpolation is more
important than the mixing ratio when performing
interpolative regularization.

4.4 Layer-wise Ablation

Mixup
Layer Set

CoLA HASOC AHS

TMix DMIX TMix DMIX TMix DMIX

{3,4} 79.45 79.70 76.86 77.46 69.37 65.66
{0, 1, 2} 80.18 94.08 76.39 77.99 69.28 71.98
{6, 7, 9} 82.91 94.63 77.12 79.44 70.11 73.45
{7, 9, 12} 85.30 95.63 77.44 80.19 70.19 74.32

{3, 4, 6, 7, 9, 12} 84.03 95.94 76.99 80.27 70.03 74.98

Table 5: Layer-wise ablation (F1 scores) when perform-
ing interpolative augmentations.

We compare the performance of DMIX and TMix
for different sets of mixup layers in Table 5. TMix
attains the best performance when the layer set

{7, 9, 12} is used since layers 6, 7, 9 and 12 contain
the most amount of syntactic and semantic infor-
mation (Chen et al., 2020a). Interestingly, DMIX

achieves the best performance when the layer is
sampled from the set {3, 4, 6, 7, 9, 12}. This sug-
gests that the surface-level information contained
in layers 3 and 4 (Jawahar et al., 2019) is effectively
leveraged by the distance-aware matrix M, leading
to further improvements over purely syntactic and
semantic information in layers {6, 7, 9, 12}.

4.5 Effect of Varying Thresholds
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Figure 3: Change in performance in terms of F1 and
Diversity with varying threshold T in % for DMIX.

We perform a study by varying the threshold τ for
DMIX and present it in Figure 3. A decreasing
τ denotes a larger distribution space for sampling
instances for Mixup, and a T of 0% decomposes it
to TMix or random Mixup. We observe an initial
increase in the performance as we constrain the em-
bedding space, suggesting the sampling of more di-
verse samples for interpolation. We observe a drop
in performance when the constrain becomes very
high, indicating that further expanding the sam-
pling space does not lead to more diverse synthetic
samples. This shows the existence of an optimum
set of input samples for performing Mixup, and we
conjecture it can be related to the sparsity in the
embedding distribution of different languages.

5 Conclusion

We propose DMIX, a novel data augmentation tech-
nique that interpolates samples intelligently cho-
sen based on their hyperbolic distance in the em-
bedding space. DMIX achieves state-of-the-art re-
sults over existing data augmentation approaches
on 8 standard and multilingual datasets in English,
Arabic, Turkish, and Hindi languages, requiring 3
times less number of iterations than random mixup.
DMIX being independent of the underlying model
and modality, holds potential to be applied on text,
speech, and vision downstream tasks.
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A Extended Analysis

Model CoLA TREC-Coarse TREC-Fine SST-2

XLNet (2019) 70.20 94.58 87.49 97.00
T5-small (2020) 71.60 95.55 86.21 91.80
FNet (2021) 78.00 96.89 89.97 94.00
EFL (2021) 86.40 93.36 80.90 96.90

EMix (2020) 85.21 97.44 90.04 91.13
SSMix (2021) 86.76 97.60 90.24 92.95
DMix (Ours) 95.94 97.80 91.14 92.44

Table 6: Performance comparison with additional base-
lines and interpolative augmentation methods.

We compare the performance of DMIX on standard
English and GLUE datasets with additional base-
lines and interpolative augmentation methods like
EMix (Jindal et al., 2020) and SSMix (Yoon et al.,
2021).

B Dataset Details

1. TRAC. (Bhattacharya et al., 2020) is a col-
lection of posts, comments, and other con-
tent from popular social media, streaming and

sharing platforms. For the purpose of our ex-
periments, we perform the aggression classifi-
cation task, for which, the data is labelled into
3 classes based on the level of aggression.

2. TREC-Coarse. (Li and Roth, 2002), The
Text REtrieval Conference-Coarse is a ques-
tion classification dataset consisting of 6
classes. The data is sourced from English
questions by USC, TREC 8, TREC 9, TREC
10 and manually constructed questions.

3. TREC-Fine. (Li and Roth, 2002) contains
the same set of questions as TREC-Coarse
grouped into 47 fine-grained classes instead
of 6.

4. CoLA. (Warstadt et al., 2018), abbreviation
for the Corpus of Linguistic Acceptability is a
part of GLUE (Wang et al., 2018) benchmark.
It is a collection of English sentences from 23
linguistic publications that are annotated for
their grammatical acceptability.

5. SST-2. (Socher et al., 2013) is a GLUE (Wang
et al., 2018) benchmark dataset consisting of
English sentences from movie reviews. Sam-
ples in the dataset are annotated for sentiment
classification task.

6. AHS. (Albadi et al., 2018) is an Arabic hate
speech classification dataset focusing mainly
on Saudi Twittersphere. The data has been
collected over a span of 6 months from March
2018 to August 2018 and has 3950 samples
classified into 2 classes.

7. TTC. (Kilinç et al., 2017), Turkish Text Cat-
egorization dataset consists of 3600 Turk-
ish documents (news/texts) classified into 6
classes. The data is obtained between the pe-
riod from May 2015 to July 2015.

8. HASOC. (Mandl et al., 2019) consists of con-
tent sampled from social media platforms. We
perform the binary Hate/Offensive content
classification task on the Hindi dataset for the
purpose of our experiments.

C Experimental Setup

We mention the optimal hyperparameter settings in
Table 8.
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Sentence TMix DMix-NT DMix

Intellectuals and the so-called Secular are more illiterate Uneducated and illiterate OAG NAG NAG
She must be sent to jail for anti national activities under NSA and PSA NAG CAG CAG

Lion king fan hit like OAG CAG NAG
kapil why are u listening to these ch∗tsss ....give them shut up call...insane idiots CAG CAG OAG

Great Job Mr Jahangir Sir I support you NAG CAG NAG

Absolute fantastic movie please go and watch the movie first. CAG NAG NAG

Table 7: Qualitative analysis of the performance obtained by TMix, DMIX-NT, and DMIX. The color intensity
of each word corresponds to the token-level attention score. Green denotes correct prediction and red denotes
incorrect prediction. (NAG: Non Aggressive, OAG: Overtly Aggressive, CAG: Covertly Aggressive).

Parameter Value

Optimizer BERTAdam

Learning Rate 2e-5

Batch Size 8

β1, β2, ε 0.9, 0.999, 1e-6

# Epochs 5

Evaluation Metric F1 Score

Base Model BERT-base-uncased,
BERT-base-multilingual-uncased

Classifier
(over architecture) Linear layer

Hardware Nvidia P100

Table 8: Model and training setup for DMix.

D Comparison with Contrastive
Learning

Contrastive learning involves training the underly-
ing model to learn an embedding space in which
similar sample pairs stay close to each other while
dissimilar ones are far apart. Hence, their training
objective directly involves training using this em-
bedding vector of the input samples in the dataset.
DMIX however chooses samples based on their
spatial distribution in the embedding space, but
does not have a training objective optimizing on
their position in the embedding space. The training
of DMIX is still supervised in nature and involves
learning over the mixed label of the individual sam-
ples being used for interpolation.

E Qualitative Analysis

To further analyze DMIX, we perform a qualitative
study by choosing examples from the dataset and
compare the predictions made by TMix and DMIX-
NT with DMIX. We analyze token-level attention
assigned to the individual terms by BERT, where
color intensity corresponds to the attention score.
We present these results in Table 7.
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