@inproceedings{agarwal-etal-2022-hyphen,
title = "{HYPHEN}: Hyperbolic {H}awkes Attention For Text Streams",
author = "Agarwal, Shivam and
Sawhney, Ramit and
Ahuja, Sanchit and
Soun, Ritesh and
Chava, Sudheer",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-short.69",
doi = "10.18653/v1/2022.acl-short.69",
pages = "620--627",
abstract = "Analyzing the temporal sequence of texts from sources such as social media, news, and parliamentary debates is a challenging problem as it exhibits time-varying scale-free properties and fine-grained timing irregularities. We propose a Hyperbolic Hawkes Attention Network (HYPHEN), which learns a data-driven hyperbolic space and models irregular powerlaw excitations using a hyperbolic Hawkes process. Through quantitative and exploratory experiments over financial NLP, suicide ideation detection, and political debate analysis we demonstrate HYPHEN{'}s practical applicability for modeling online text sequences in a geometry agnostic manner.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agarwal-etal-2022-hyphen">
<titleInfo>
<title>HYPHEN: Hyperbolic Hawkes Attention For Text Streams</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shivam</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramit</namePart>
<namePart type="family">Sawhney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanchit</namePart>
<namePart type="family">Ahuja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Soun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudheer</namePart>
<namePart type="family">Chava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Analyzing the temporal sequence of texts from sources such as social media, news, and parliamentary debates is a challenging problem as it exhibits time-varying scale-free properties and fine-grained timing irregularities. We propose a Hyperbolic Hawkes Attention Network (HYPHEN), which learns a data-driven hyperbolic space and models irregular powerlaw excitations using a hyperbolic Hawkes process. Through quantitative and exploratory experiments over financial NLP, suicide ideation detection, and political debate analysis we demonstrate HYPHEN’s practical applicability for modeling online text sequences in a geometry agnostic manner.</abstract>
<identifier type="citekey">agarwal-etal-2022-hyphen</identifier>
<identifier type="doi">10.18653/v1/2022.acl-short.69</identifier>
<location>
<url>https://aclanthology.org/2022.acl-short.69</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>620</start>
<end>627</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HYPHEN: Hyperbolic Hawkes Attention For Text Streams
%A Agarwal, Shivam
%A Sawhney, Ramit
%A Ahuja, Sanchit
%A Soun, Ritesh
%A Chava, Sudheer
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F agarwal-etal-2022-hyphen
%X Analyzing the temporal sequence of texts from sources such as social media, news, and parliamentary debates is a challenging problem as it exhibits time-varying scale-free properties and fine-grained timing irregularities. We propose a Hyperbolic Hawkes Attention Network (HYPHEN), which learns a data-driven hyperbolic space and models irregular powerlaw excitations using a hyperbolic Hawkes process. Through quantitative and exploratory experiments over financial NLP, suicide ideation detection, and political debate analysis we demonstrate HYPHEN’s practical applicability for modeling online text sequences in a geometry agnostic manner.
%R 10.18653/v1/2022.acl-short.69
%U https://aclanthology.org/2022.acl-short.69
%U https://doi.org/10.18653/v1/2022.acl-short.69
%P 620-627
Markdown (Informal)
[HYPHEN: Hyperbolic Hawkes Attention For Text Streams](https://aclanthology.org/2022.acl-short.69) (Agarwal et al., ACL 2022)
ACL
- Shivam Agarwal, Ramit Sawhney, Sanchit Ahuja, Ritesh Soun, and Sudheer Chava. 2022. HYPHEN: Hyperbolic Hawkes Attention For Text Streams. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 620–627, Dublin, Ireland. Association for Computational Linguistics.