@inproceedings{preda-emerson-2022-using,
title = "Using dependency parsing for few-shot learning in distributional semantics",
author = "Preda, Stefania and
Emerson, Guy",
editor = "Louvan, Samuel and
Madotto, Andrea and
Madureira, Brielen",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-srw.38/",
doi = "10.18653/v1/2022.acl-srw.38",
pages = "461--466",
abstract = "In this work, we explore the novel idea of employing dependency parsing information in the context of few-shot learning, the task of learning the meaning of a rare word based on a limited amount of context sentences. Firstly, we use dependency-based word embedding models as background spaces for few-shot learning. Secondly, we introduce two few-shot learning methods which enhance the additive baseline model by using dependencies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="preda-emerson-2022-using">
<titleInfo>
<title>Using dependency parsing for few-shot learning in distributional semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Preda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Louvan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Madotto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brielen</namePart>
<namePart type="family">Madureira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we explore the novel idea of employing dependency parsing information in the context of few-shot learning, the task of learning the meaning of a rare word based on a limited amount of context sentences. Firstly, we use dependency-based word embedding models as background spaces for few-shot learning. Secondly, we introduce two few-shot learning methods which enhance the additive baseline model by using dependencies.</abstract>
<identifier type="citekey">preda-emerson-2022-using</identifier>
<identifier type="doi">10.18653/v1/2022.acl-srw.38</identifier>
<location>
<url>https://aclanthology.org/2022.acl-srw.38/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>461</start>
<end>466</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using dependency parsing for few-shot learning in distributional semantics
%A Preda, Stefania
%A Emerson, Guy
%Y Louvan, Samuel
%Y Madotto, Andrea
%Y Madureira, Brielen
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F preda-emerson-2022-using
%X In this work, we explore the novel idea of employing dependency parsing information in the context of few-shot learning, the task of learning the meaning of a rare word based on a limited amount of context sentences. Firstly, we use dependency-based word embedding models as background spaces for few-shot learning. Secondly, we introduce two few-shot learning methods which enhance the additive baseline model by using dependencies.
%R 10.18653/v1/2022.acl-srw.38
%U https://aclanthology.org/2022.acl-srw.38/
%U https://doi.org/10.18653/v1/2022.acl-srw.38
%P 461-466
Markdown (Informal)
[Using dependency parsing for few-shot learning in distributional semantics](https://aclanthology.org/2022.acl-srw.38/) (Preda & Emerson, ACL 2022)
ACL