@inproceedings{yang-etal-2022-learning,
title = "Learning with Limited Text Data",
author = "Yang, Diyi and
Parikh, Ankur and
Raffel, Colin",
editor = "Benotti, Luciana and
Okazaki, Naoaki and
Scherrer, Yves and
Zampieri, Marcos",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-tutorials.5",
doi = "10.18653/v1/2022.acl-tutorials.5",
pages = "28--31",
abstract = "Natural Language Processing (NLP) has achieved great progress in the past decade on the basis of neural models, which often make use of large amounts of labeled data to achieve state-of-the-art performance. The dependence on labeled data prevents NLP models from being applied to low-resource settings and languages because of the time, money, and expertise that is often required to label massive amounts of textual data. Consequently, the ability to learn with limited labeled data is crucial for deploying neural systems to real-world NLP applications. Recently, numerous approaches have been explored to alleviate the need for labeled data in NLP such as data augmentation and semi-supervised learning. This tutorial aims to provide a systematic and up-to-date overview of these methods in order to help researchers and practitioners understand the landscape of approaches and the challenges associated with learning from limited labeled data, an emerging topic in the computational linguistics community. We will consider applications to a wide variety of NLP tasks (including text classification, generation, and structured prediction) and will highlight current challenges and future directions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2022-learning">
<titleInfo>
<title>Learning with Limited Text Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ankur</namePart>
<namePart type="family">Parikh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Colin</namePart>
<namePart type="family">Raffel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luciana</namePart>
<namePart type="family">Benotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yves</namePart>
<namePart type="family">Scherrer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural Language Processing (NLP) has achieved great progress in the past decade on the basis of neural models, which often make use of large amounts of labeled data to achieve state-of-the-art performance. The dependence on labeled data prevents NLP models from being applied to low-resource settings and languages because of the time, money, and expertise that is often required to label massive amounts of textual data. Consequently, the ability to learn with limited labeled data is crucial for deploying neural systems to real-world NLP applications. Recently, numerous approaches have been explored to alleviate the need for labeled data in NLP such as data augmentation and semi-supervised learning. This tutorial aims to provide a systematic and up-to-date overview of these methods in order to help researchers and practitioners understand the landscape of approaches and the challenges associated with learning from limited labeled data, an emerging topic in the computational linguistics community. We will consider applications to a wide variety of NLP tasks (including text classification, generation, and structured prediction) and will highlight current challenges and future directions.</abstract>
<identifier type="citekey">yang-etal-2022-learning</identifier>
<identifier type="doi">10.18653/v1/2022.acl-tutorials.5</identifier>
<location>
<url>https://aclanthology.org/2022.acl-tutorials.5</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>28</start>
<end>31</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning with Limited Text Data
%A Yang, Diyi
%A Parikh, Ankur
%A Raffel, Colin
%Y Benotti, Luciana
%Y Okazaki, Naoaki
%Y Scherrer, Yves
%Y Zampieri, Marcos
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F yang-etal-2022-learning
%X Natural Language Processing (NLP) has achieved great progress in the past decade on the basis of neural models, which often make use of large amounts of labeled data to achieve state-of-the-art performance. The dependence on labeled data prevents NLP models from being applied to low-resource settings and languages because of the time, money, and expertise that is often required to label massive amounts of textual data. Consequently, the ability to learn with limited labeled data is crucial for deploying neural systems to real-world NLP applications. Recently, numerous approaches have been explored to alleviate the need for labeled data in NLP such as data augmentation and semi-supervised learning. This tutorial aims to provide a systematic and up-to-date overview of these methods in order to help researchers and practitioners understand the landscape of approaches and the challenges associated with learning from limited labeled data, an emerging topic in the computational linguistics community. We will consider applications to a wide variety of NLP tasks (including text classification, generation, and structured prediction) and will highlight current challenges and future directions.
%R 10.18653/v1/2022.acl-tutorials.5
%U https://aclanthology.org/2022.acl-tutorials.5
%U https://doi.org/10.18653/v1/2022.acl-tutorials.5
%P 28-31
Markdown (Informal)
[Learning with Limited Text Data](https://aclanthology.org/2022.acl-tutorials.5) (Yang et al., ACL 2022)
ACL
- Diyi Yang, Ankur Parikh, and Colin Raffel. 2022. Learning with Limited Text Data. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, pages 28–31, Dublin, Ireland. Association for Computational Linguistics.