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Abstract
Multilingual Neural Machine Translation has been showing great success using transformer
models. Deploying these models is challenging because they usually require large vocabulary
(vocab) sizes for various languages. This limits the speed of predicting the output tokens in the
last vocab projection layer. To alleviate these challenges, this paper proposes a fast vocabulary
projection method via clustering which can be used for multilingual transformers on GPUs.
First, we offline split the vocab search space into disjoint clusters given the hidden context
vector of the decoder output, which results in much smaller vocab columns for vocab projec-
tion. Second, at inference time, the proposed method predicts the clusters and candidate active
tokens for hidden context vectors at the vocab projection. This paper also includes analysis
of different ways of building these clusters in multilingual settings. Our results show end-to-
end speed gains in float16 GPU inference up to 25% while maintaining the BLEU score and
slightly increasing memory cost. The proposed method speeds up the vocab projection step
itself by up to 2.6x. We also conduct an extensive human evaluation to verify the proposed
method preserves the quality of the translations from the original model.

1 Introduction

Neural machine translation (NMT) has witnessed significant advances by the introduction of
the transformer model (Vaswani et al., 2017) where excellent performance has been shown for
bilingual translation initially, mainly to and from English. Later, the model has been extended
to multiple language pairs e.g. (Johnson et al., 2017) and is referred to as multilingual neural
machine translation (MNMT). The multilingual model usually comes with a significant increase
in the number of parameters and the vocabulary (vocab) size to accommodate various languages.

This work focuses on implementing efficient vocab projection in transformer models. The
problem becomes very important for MNMT. While bilingual NMT typically use vocab of
around 32K sub-words, MNMT has significantly larger vocab size to adequately cover all the
languages. For example, the recent MNMT submission from Microsoft to the WMT21 shared
task that covers 100+ languages has a vocab size of 250K sub-words (Yang et al., 2021). The
increased vocab makes the projection very compute-intensive and it can take up to 25% of
the total computation in our internal benchmark. Hence, the need to speedup this operation
becomes even more important.

Fast vocab projection is well-studied for NMT and natural language processing (NLP). In
(Shi and Knight, 2017), the authors propose two methods to reduce the effective vocab for NMT.
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The first formulates the problem as a nearest neighbor search and uses locality sensitive hashing
(LSH) to speedup the computation while the second uses alignment information to select a sub-
set of the vocab based on the input. It is found that the alignment-based method leads to around
2X speedup. The work (Chen et al., 2018) proposes an efficient screening model to exploit the
clustering structure of context features right before vocab projection. The authors formulate
a joint optimization problem to learn the clusters and their corresponding vocab subspace. In
the same paper, a thorough comparison to the existing literature is done including graph-based
nearest-neighbor search (Zhang et al., 2018), SVD approximation(Shim et al., 2017), a modi-
fied version of hierarchical softmax (Grave et al., 2016) and locality sensitive hashing (LSH)
for maximum inner product search (MIPS) (Neyshabur and Srebro, 2014). It is shown that the
clustering solution can outperform the latter techniques in terms of accuracy-speed trade-off in
bilingual LSTMs on CPU.

This paper extends the clustering based approach from (Chen et al., 2018) to MNMT for
both dense and sparse transformer models on GPU. To simplify integration and accessibility in
the MNMT large-scale model settings, we propose to use kmeans clustering to split the vocab
search space into disjoint clusters given the hidden context vector of the decoder output. The
multilingual extension comprises experimenting with different ways to build the cluster maps
as well as testing different configurations such as number of centroids and corresponding vo-
cab subspace to make the method efficiently work at large scale. In (Shi et al., 2018), it is
shown how to extend LSH to run efficiently within beam search on GPU but here we use and
develop optimized kernels. These kernels are developed for FasterTransformer, a highly opti-
mized transformer-based encoder and decoder implementation offered by NVIDIA1. Serving
GPU inference is essential because GPUs give several orders of magnitude speedups relative
to CPUs for large transformer models 2. Experimental results show end-to-end speed gains in
float16 GPU inference up to 25% while maintaining the BLEU score and slightly increasing
memory cost. The proposed method speeds up the vocab projection step itself by up to 2.6x.
We also conduct an extensive human evaluation to verify the proposed method preserves the
quality of the translations from the original model.

The paper is organized as follows. Section 2 describes the proposed method focusing on
the multilingual aspect and GPU implementation. This is followed by experimental results for
both dense and sparse transformer models and for 6 translation directions in Section 3. Finally,
Section 4 concludes the paper.

2 Method

2.1 Problem Motivation
The last layer of decoder in MNMT transformer models is typically a vocab projection layer
followed by softmax activation to get the predicted probability of output tokens. Let W ∈ Rd×N

be a weight matrix of the trained model, b ∈ RN be the bias of the trained model, and h ∈ Rd×M

be the hidden context vector before the vocab projection layer. Here, N is the vocab size of the
MNMT transformer model, d is the transformer embedding dimension, and M is the product
of batch and beam sizes. For a total of M tokens and current time step t, we compute the vocab
projection as follows:

z(m,t) =WTh(m,t) + b (1)

where z(m,t) is the logits of the current input token, m, at the current time step t. To compute
the probabilities of the predicted token p̂m,t, we compute p̂m,t = softmax(z(m,t)). These

1https://github.com/NVIDIA/FasterTransformer
2https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s42518/
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probabilities are sorted in descending order for which they are used for the search algorithms
such as beam search, greedy search, sampling, and etc. in machine translation.

In MNMT transformer models, the weights for vocab projection , W , is usually large to
cover different languages. Our profiling results show that vocab projection occupies about 25%
or more depending on the beam and batch size from the end-to-end inference time. To speedup
the inference while keeping the accuracy under control, we propose a vocab projection method
via clustering for MNMT transformer models. The proposed vocab projection consists of two
major steps: 1) Offline training of clusters based on hidden context vectors which is the output
of the last decoder layer; 2) Online inference using the created clusters. Both steps will be
explained in the following sections.

2.2 Offline Training of Clusters
Figure 1 shows an overview of the offline training step of the proposed clustering-based vocab
projection method. Using an unlabelled training set, this method first records the hidden context
vectors h(m,t) and corresponding K candidate likely tokens from p̂m,t given the pre-trained
model. K here indicates the number of likely predicted output tokens for each input token. The
use of unlabelled data is a benefit of the proposed method as data is not always available in
MNMT. Next, we partition the context vectors into disjoint clusters, C, of a specific number
of centroids, where similar context vectors are grouped in the same cluster. From the context
vector members of each cluster, we construct an active tokens label set called A. Each active
token set, aj ∈ A, of the corresponding cluster is the union of the K predicted tokens of all
members of this cluster. For example at K=3, suppose that we have only 2 tokens from the
training set in the same cluster has the following predicted tokens {2,4,6},{2,8,9} according
to the model’s predicted probabilities. Then, the aj for this cluster will be {2,4,6,8,9}.

Context vectors and corresponding 
top k activated tokens,

Offline Steps [Final]

Clustering
Target 

Trained 
Model

Unlabeled data

Generation of Clustering Training Data

Output clusters, 
with centroids

. . . 

Candidate 
label sets, 

. . . 

Figure 1: Overview of Vocab Projection via Clustering.

There are different ways to create the clusters and corresponding active tokens set to utilize
different information such as source and target languages. Among these ways, we can create
the clusters as well as the active tokens while assuming either the target language is only known
or the source and target language are known. To compare these two ways, we carried out an
experiment on the Italian-to-English (ItEn) language direction, where we varied the number
of clusters from 100 to 500 with a step size of 100 at K=1. To construct the clusters of ItEn
using source and target information, we feed ItEn training data into the model and get the
corresponding clusters and active tokens. For target ”en” only known, we feed ItEn, French-to-
English (FrEn), and Spanish-to-English (EsEn), data to the model. Later, we run clustering with
this mixture of data and construct the corresponding active tokens. In both cases, we measured
the maximum percentage of active vocab columns when the number of clusters ranges from 100
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to 500. For instance, Figure 2 shows that the percentage of maximum activated vocabs among
whole vocabs with 400 clusters is 17.5% when the target only is known, while the percentage is
12.5% when both source and target information is used. Because we favor speed improvements,
we chose to run the rest of all our experiments by constructing the models while assuming that
source and target languages are known, which is typical in machine translation. This results in
fewer activated vocabs for the projection and a faster matrix product at the expense of only an
insignificant increase in memory costs as will be shown in the results section.

Figure 2: Comparison Between Ways to Build the Clusters and Active Tokens.

2.3 Vocab Projection via Clustering for GPU Inference
This section outlines the proposed method steps at inference time. The input of our method
is the number of clusters, corresponding centroid vectors and active tokens set obtained from
offline training and hidden context vectors. To compute the output logits, the first step of vocab
projection via clustering at inference time is to adaptively get the predicted selected cluster
indices based on the hidden context vectors. Suppose that G is the cluster indices of the hidden
context vectors, and Cj is the centroid vector of cluster j, we compute the predicted centroid
indices using the Euclidean distance for a token m at time step t as follows:

G(m,t) =argmin
j
∥C2

j − 2htest
(m,t)Cj∥ (2)

where j is between 0 and a given number of clusters. Since the centroid vectors, Cj are constant
at inference time, we pre-compute C2

j for all j and save C2
j in GPU memory.

In practice, the inference is usually done in batch mode where the batch of context vectors
can be of different nature and can belong to different clusters as well as candidate label sets.
A possible approach is to independently calculate vocab projection for each context vector
based on its cluster and corresponding candidate label set. However, this computation will limit
the speed on GPUs because they by architecture typically prefer large-scale data in a single
computation to hide latency (Cheng et al., 2014). To overcome this challenge, we propose to
union the candidate label sets of the context vectors motivated by the possible overlap of label
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candidate sets within the beam. Although the vocab projection weight matrix of this union set
will be larger than the one for independent computation, a single kernel GPU launch for the
batch saves inference time while maintaining accuracy.

To efficiently compute this union on GPU, we create a boolean list to indicate whether a
vocab token should be active (=1), which is initialized as inactive (=0). We then launch threads
to turn on particular vocab columns in this boolean list depending on the active tokens corre-
sponding to the predicted centroids. Suppose that the predicted centroids list is G = {0,1,2}
and corresponding active tokens set is {2,4,6},{2,8,9},{1,3}, respectively. The union of the
latter token list yields a reduced vocab column set: {1,2,3,4,6,8,9}. To get the union, we
construct a boolean list equals to [0, 1, 1, 1, 1, 0, 1, 0, 1, 1]. Using the CUB Toolkit function on
GPU by Nvidea routines, we efficiently get the vocab columns where this boolean list equals
1. The final reduced weight matrix is substituted in Equation 1 using the newly released gather
and scatter fusion with GEMM kernel from Nvidia CUTLASS 2.9. To put together our method
steps at inference time, we list them as follows:

1. Compute the predicted centroids c by substituting the context vectors in Equation 2.
2. Get the activated weight column index of the reduced matrix from the union of active

tokens for the given predicted centroids.
3. Compute the logits by substituting the reduced weight matrix in Equation 1.
4. Scatter the computed logits in their original locations while setting the non-included weight

positions to -INF.
5. Compute the softmax based on this scattered logits matrix.

Theoretical speed-up Based on the steps above, the proposed method turns the theoretical
complexity of the vocab projection in Equation 1 from O(dN) to O((r + N̄)d). The average
number of activated weight columns in the reduced vocab matrix, N̄ , is much less than N . N̄
is at most to ≈15% of N as shown in the results section. Also, the number of centroids, r is far
less than N (typically set to 2000).

3 Experimental Results

In this section, we present the evaluation results for the proposed vocab projection method in
a multi-lingual transformer setting on GPU. We first introduce the experimental setup, then
assess the impact of the proposed method on vocab projection itself as well as show the speed
and accuracy performance results. We conducted an extensive human evaluation to verify the
translation quality is preserved. Finally, we study how different configurations such as the
number of centroids and K likely tokens affect the performance of our method.

3.1 Experimental Setup
Task and Models We employ the proposed method in MNMT via two transformer models:
1) ZCode Dense; 2) ZCode M3 reviewed and presented in Kim et al. (2021). Both models
are based on the transformer encoder-decoder architecture (Vaswani et al., 2017). For better
inference efficiency, the architecture of these models utilizes the deeper encoders and shallower
decoders architecture presented in (Kim et al., 2019) and (Kasai et al., 2020). Also, both use pre-
layer normalization which is known to be more stable for the deeper transformer architecture
presented in (Xiong et al., 2020). Both models are constructed from 24 encoder layers and 12
decoder layers with 1024 hidden dimension and 4096 feedforward layer hidden dimension with
16 multi-head attention heads. For ZCode Dense, the number of parameters is 0.7B and vocab
size is 250,000. The ZCode M3 has 32 experts, 5B parameters, and 128,000 vocab size.
Cluster Data and Training Settings An in-house training set is used to offline train the clusters
as indicated in Section 2.2. This set encompasses 6 language directions. These directions are
Spanish to English (EsEn), French to English (FrEn), Italian to English (ItEn), English to Span-
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ish (EnEs), English to French (EnFr), and English to Italian (EnIt). To support multilinguality,
we offline create for each language direction a number of clusters based on the hidden context
vector similarity. Training the clusters for each language direction used 20 million sentence
examples and was done using Faiss, where we run 20 training iterations of kmeans clustering.
Faiss is an open source code for clustering training offered by Facebook (Johnson et al., 2019).
Validation Data Table 1 indicates the number of sentence examples in our two in-house sets.
EX means from English language pairs, while XE means to English language pairs.

Table 1: Statistics of the in-house validation sets. Set 1 is a mix of multiple domains with focus
on news, while Set 2 is a mix of news, industry, government, and finance domains.

Language
Direction

Set 1 Size Set 2 Size

EnEs 5551 9639
EX EnFr 20038 13725

EnIt 9747 13747
FrEn 20039 6149

XE ItEn 9747 7492
EsEn 5460 4539

Inference Hardware and Environment Inference experiments are carried out on a single
NVIDIA Tesla V100 GPU. Float16 inference is enabled because it speeds up the inference
while maintaining accuracy. Our inference environment is the highly optimized FasterTrans-
former from NVIDIA.

3.2 Impact of Clustering on Vocab Projection Matrix Multiplication
Our proposed method via clustering noticeably reduces the time to complete the vocab pro-
jection matrix multiplication. To verify this insight, we carried out an experiment to compare
the proposed solution with the default inference without clustering on set 1. In ZCode Dense,
the vocab projection runs in about 720 µs, while the vocab projection runs in about 600 µs for
ZCode M3 as the vocab size is smaller. As shown in Table 2, the proposed method only acti-
vates up to 12.39% on average out of the original weight matrix in ZCode Dense, while running
2.4x faster than the default matrix multiplication in beam 2, batch 20, and float16 inference.
For example, the default elapsed time of the vocab projection step in ZCode Dense is 720 (µs),
while the elapsed time using the proposed approach is 230.09 (µs) for EnEs language direction.
Along the same line, ZCode M3 activates up to 15.8% of the original vocab projection weight
matrix, while improving the time of vocab projection up to 2.6x.

Table 2: Proposed Method Gains of 2.4x to 2.6x on Vocab Projection using Set 1.

Lang ZCode Dense (720 µs default) ZCode M3 (600 µs default)
Active Percentage (%) Time (µs) Active Percentage (%) Time (µs)

EnEs 6.36 230.09 12.70 215.90
EnFr 6.37 228.90 12.18 218.05
EnIt 7.46 231.84 15.80 227.80
FrEn 16.50 348.49 15.70 230.50
ItEn 10.05 274.90 13.60 217.30
EsEn 12.39 299.97 12.70 213.50
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3.3 End-to-end Accuracy and Speed Performance Comparison
Tables 3 and 4 compare the speed percentage and BLEU scores of the ZCode Dense and ZCode
M3 before and after clustering on our validation sets. Speed percentages are done based on
the number of tokens per second in the default and proposed method, where higher numbers
indicate more tokens per second for the proposed method. For ZCode Dense, end-to-end infer-
ence speed percentages range from 13.0% to 25.7% across different language directions while
maintaining the BLEU score and slightly increasing the memory required for the model due to
the extra information needed by the clustering (see Table 5 for memory). Similarly, the pro-
posed vocab projection method speeds up the ZCode M3 with a range between 6% to 8.8%
across different language directions. It is worth noting that this performance evaluation is done
in FasterTransformer, which showed noticeable speedups for encoder-decoder transformer ar-
chitectures. In addition, authors in (Chen et al., 2018) have done extensive comparisons to the
prior art and showed that clustering-based solutions are better than other solutions in bi-lingual
settings on CPU. This paper extends (Chen et al., 2018), scales the clustering to the multi-
lingual setting as well as large vocab sizes on GPU, and shows positive results for both dense
and sparsely activated transformers.

Table 3: Performance Evaluation of the Proposed Vocab Projection Method using Set 1.

Model Lang beam=1, batch=1 beam=2, batch=20
BLEU Speedup (%) BLEU Speedup (%)

Baseline Clus Baseline Clus
EnEs 43.29 43.21 25.70 43.89 43.81 13.00
EnFr 38.90 38.80 25.90 39.55 39.55 10.20

ZCode EnIt 38.58 38.49 23.55 39.24 39.30 13.96
Dense FrEn 44.83 44.80 22.25 45.37 45.46 15.51

ItEn 44.55 44.28 26.60 45.37 45.38 16.34
EsEn 45.28 45.36 21.03 45.99 45.96 11.85
EX

AVG
39.50 39.40 25.00 40.14 40.15 11.70

XE
AVG

45.03 44.80 23.30 45.57 45.60 14.60

EnEs 45.99 45.96 6.80 46.07 46.09 7.87
EnFr 45.50 45.46 7.58 45.68 45.69 7.58

ZCode EnIt 43.09 43.08 6.59 43.31 43.35 8.84
M3 FrEn 50.06 49.92 4.70 50.21 50.31 4.90

ItEn 49.28 49.12 6.84 49.28 49.36 7.78
EsEn 50.01 50.04 7.50 50.21 50.32 6.00
EX

AVG
44.86 44.83 7.00 45.02 45.04 8.10

XE
AVG

49.78 49.69 6.30 49.90 49.90 6.20

3.4 Human Evaluation
We conduct quality evaluation to examine whether the proposed method retained the same out-
put quality as Baseline and does not introduce any quality degradation. For this investigation,
we employ Direct Assessment human evaluation (DA; Bentivogli et al., 2018). In particular,
we use segment-level contrastive source-based DA (contrastive DA; Akhbardeh et al., 2021).
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Table 4: Performance Evaluation of the Proposed Vocab Projection Method on Set 2 at beam=2,
batch=20, and float16 inference.

Lang ZCode Dense ZCode M3
BLEU Speedup (%) BLEU Speedup (%)

Baseline Clus Baseline Clus
EnEs 43.95 43.95 12.29 47.21 47.25 6.70
EnFr 41.46 41.46 11.83 46.74 46.77 5.95
EnIt 41.79 41.81 11.82 47.28 47.34 6.50
FrEn 46.31 46.24 11.49 48.64 48.75 6.00
ItEn 44.15 44.01 13.34 47.89 47.99 6.48
EsEn 45.02 44.89 12.05 47.56 47.68 7.00
EX

AVG
42.40 42.40 12.00 47.07 47.12 6.40

XE
AVG

45.16 45.04 12.30 48.03 47.81 6.50

Table 5: Memory cost Comparisons under Different Models at beam=2, batch=20 and float16
inference. Selected number of centroids vary a bit more for ZCode M3 than ZCode Dense.

ZCode Dense ZCode M3
Language
Direction

Memory
Baseline (GB)

Memory Clus
(GB)

Memory
Baseline (GB)

Memory Clus
(GB)

EnEs 4.37 4.39 10.19 10.31
EnFr 4.37 4.39 10.19 10.35
EnIt 4.37 4.39 10.19 10.29
FrEn 4.37 4.39 10.19 10.35
ItEn 4.37 4.39 10.19 10.28
EsEn 4.37 4.39 10.19 10.37

In contrastive DA, human annotators see two randomly selected output segments generated by
Baseline and our method side-by-side anonymized along with the corresponding source seg-
ment. Annotators are prompted to rate each output segment on a continuous scale of 0 to 100,
based on the translation adequacy. Because both system output segments are presented simul-
taneously in contrastive DA, humans are encouraged to highlight translation differences with
scores they assign, which allows us to capture quality differences between Baseline and our
method effectively. The contrastive DA score annotations were collected with the Appraise
framework (Federmann, 2018). We use paid professional annotators for all the evaluation tasks.

For evaluation data, we use 200,000 monolingual segments for each language direction
sampled from our in-house evaluation data pool consisting of various data sources or domains.
Among these test items, we confirmed that approximately 92% of translations generated by our
method and Baseline for each language direction are identical, which indicates that there was no
quality degradation with these test items. Then we randomly sampled 1,700 output translation
pairs among the non-identical pairs found in the remaining 8% (roughly 16,000 pairs) for the
contrastive DA evaluation.

Table 6 shows the contrastive DA results. We observed no cases where Baseline scores
were better than those of our method with statistical significance. Moreover, our method out-
performed Baseline for English into Spanish and French (p < 0.01) and English into Italian
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(p < 0.05). These results clearly indicates that our method did not sacrifice any translation
quality for the efficiency gains. Also, our method was better than Baseline with statistical sig-
nificance for all the from-English directions. This seems promising, but it still requires a deeper
insight to justify overall quality improvement for from-English directions with these small pos-
itive deltas found in a limited number of language pairs. Further investigation with a wider
variety of language pairs is necessary to confirm such quality improvement exists.

Table 6: Contrastive DA Human Evaluation Results. Scores in the third and fourth columns
are the mean of item scores for each language direction of each system. Positive ∆ indicates
that the Clustering score is larger (better) than the Baseline score. We used Wilcoxon Rank
Sum Test for significance testing. Score differences are statistically significant at p < 0.05 (⋆),
p < 0.01 (⋆⋆), p < 0.001 (⋆⋆⋆), or not at all.

Model Language
Direction

Baseline Clustering ∆ P-value

EnEs 87.20 88.10 0.90 ⋆⋆
EnFr 88.10 88.90 0.80 ⋆⋆

ZCode EnIt 85.10 85.5 0.40 ⋆
M3 FrEn 86.70 87.1 0.40

ItEn 79.40 79.40 0.00
EsEn 86.10 86.60 0.50

3.5 Clustering Hyperparameters Selection
To demystify the impact of the number of K likely tokens and centroids in the proposed method,
we carried out two experiments on ItEn language direction on a validation set. The results of
these experiments were also consistent for other language pairs.

The goal of the first experiment is to select the best number of centroids and K likely tokens
for ItEn, where we varied the number of centroids from 100 to 2000 with a step size of 100 and
setting the K likely tokens to either 1, 3, or 5. Figure 3 shows the outcome of this experiment
for the ItEn language direction on ZCode Dense, where speed percentages are calculated to
the ZCode Dense without clustering. From the figure, we can observe that the highest speed
percentages usually occur at the higher centroids. In this case, 1300 centroids is the best setting
in terms of speed. In addition, we can observe that K=1 leads to the highest speed percentages
among K=3 and K=5. This observation goes with one’s intuition as K=1 uses only the most
likely predicted token to build the activated weight vocab indices for each cluster.

To confirm this intuition, we carried out another experiment for ItEn under ZCode Dense
while setting the number of centroids to 1300. In this experiment, we recorded the percentage
of weight active columns at each centroid index from 0 to 1299 for each of K=5, K=3, and K=1.
As shown in Figure 4, K=1 has less activated weight indices for each centroid index relative to
K=3 and K=5. If a hidden context vector is a member of cluster index 0 for example, K=5, K=3,
and K=1 have around 6%, 5%, and 2% of weight matrix active, respectively. These percentages
confirm that K=1 usually leads to the highest speed percentages among K=3 and K=5.

4 Conclusion

This paper proposes a fast vocab projection method via clustering for multilingual neural ma-
chine translation with large vocab sizes and practically applied models on GPU. The method
splits the large vocab search space into smaller subspaces to run efficient GPU inference. Re-
sults reveal end-to-end speed improvements up to 25% while maintaining the BLEU, and up

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas 
 

Orlando, USA, September 12-16, 2022. Volume 1: Research Track 

66



Figure 3: Impact of Varying the Number of Centroids and K likely tokens on Speed Percentage
carried out on ItEn language direction from Development Set.

Figure 4: Comparison between K=5, K=3, and K=1 likely tokens in terms of Percentage Acti-
vated Weight Columns out of Vocab Elements When Number of Centroids = 1300 for ItEn.
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to 2.6x speed improvement on the vocab projection step. We conducted human evaluations to
verify the translation quality. In the future, we wish to explore our method in an X-Y machine
translation scenario.
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