@inproceedings{n-elnokrashy-etal-2022-language,
title = "Language Tokens: A Frustratingly Simple Approach Improves Zero-Shot Performance of Multilingual Translation",
author = "ElNokrashy, Muhammad and
Hendy, Amr and
Maher, Mohamed and
Afify, Mohamed and
Hassan Awadalla, Hany",
editor = "Duh, Kevin and
Guzm{\'a}n, Francisco",
booktitle = "Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)",
month = sep,
year = "2022",
address = "Orlando, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2022.amta-research.6/",
pages = "70--82",
abstract = "This paper proposes a simple yet effective method to improve direct (X-to-Y) translation for both cases: zero-shot and when direct data is available. We modify the input tokens at both the encoder and decoder to include signals for the source and target languages. We show a performance gain when training from scratch, or finetuning a pretrained model with the pro- posed setup. In the experiments, our method shows nearly 10.0 BLEU points gain on in-house datasets depending on the checkpoint selection criteria. In a WMT evaluation campaign, From- English performance improves by 4.17 and 2.87 BLEU points, in the zero-shot setting, and when direct data is available for training, respectively. While X-to-Y improves by 1.29 BLEU over the zero-shot baseline, and 0.44 over the many-to-many baseline. In the low-resource setting, we see a 1.5 {\ensuremath{\sim}} 1.7 point improvement when finetuning on X-to-Y domain data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="n-elnokrashy-etal-2022-language">
<titleInfo>
<title>Language Tokens: A Frustratingly Simple Approach Improves Zero-Shot Performance of Multilingual Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="family">ElNokrashy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amr</namePart>
<namePart type="family">Hendy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Maher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Afify</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hany</namePart>
<namePart type="family">Hassan Awadalla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francisco</namePart>
<namePart type="family">Guzmán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">Orlando, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a simple yet effective method to improve direct (X-to-Y) translation for both cases: zero-shot and when direct data is available. We modify the input tokens at both the encoder and decoder to include signals for the source and target languages. We show a performance gain when training from scratch, or finetuning a pretrained model with the pro- posed setup. In the experiments, our method shows nearly 10.0 BLEU points gain on in-house datasets depending on the checkpoint selection criteria. In a WMT evaluation campaign, From- English performance improves by 4.17 and 2.87 BLEU points, in the zero-shot setting, and when direct data is available for training, respectively. While X-to-Y improves by 1.29 BLEU over the zero-shot baseline, and 0.44 over the many-to-many baseline. In the low-resource setting, we see a 1.5 \ensuremath\sim 1.7 point improvement when finetuning on X-to-Y domain data.</abstract>
<identifier type="citekey">n-elnokrashy-etal-2022-language</identifier>
<location>
<url>https://aclanthology.org/2022.amta-research.6/</url>
</location>
<part>
<date>2022-09</date>
<extent unit="page">
<start>70</start>
<end>82</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language Tokens: A Frustratingly Simple Approach Improves Zero-Shot Performance of Multilingual Translation
%A ElNokrashy, Muhammad
%A Hendy, Amr
%A Maher, Mohamed
%A Afify, Mohamed
%A Hassan Awadalla, Hany
%Y Duh, Kevin
%Y Guzmán, Francisco
%S Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)
%D 2022
%8 September
%I Association for Machine Translation in the Americas
%C Orlando, USA
%F n-elnokrashy-etal-2022-language
%X This paper proposes a simple yet effective method to improve direct (X-to-Y) translation for both cases: zero-shot and when direct data is available. We modify the input tokens at both the encoder and decoder to include signals for the source and target languages. We show a performance gain when training from scratch, or finetuning a pretrained model with the pro- posed setup. In the experiments, our method shows nearly 10.0 BLEU points gain on in-house datasets depending on the checkpoint selection criteria. In a WMT evaluation campaign, From- English performance improves by 4.17 and 2.87 BLEU points, in the zero-shot setting, and when direct data is available for training, respectively. While X-to-Y improves by 1.29 BLEU over the zero-shot baseline, and 0.44 over the many-to-many baseline. In the low-resource setting, we see a 1.5 \ensuremath\sim 1.7 point improvement when finetuning on X-to-Y domain data.
%U https://aclanthology.org/2022.amta-research.6/
%P 70-82
Markdown (Informal)
[Language Tokens: A Frustratingly Simple Approach Improves Zero-Shot Performance of Multilingual Translation](https://aclanthology.org/2022.amta-research.6/) (ElNokrashy et al., AMTA 2022)
ACL