@inproceedings{romberg-2022-perspective,
title = "Is Your Perspective Also My Perspective? Enriching Prediction with Subjectivity",
author = "Romberg, Julia",
editor = "Lapesa, Gabriella and
Schneider, Jodi and
Jo, Yohan and
Saha, Sougata",
booktitle = "Proceedings of the 9th Workshop on Argument Mining",
month = oct,
year = "2022",
address = "Online and in Gyeongju, Republic of Korea",
publisher = "International Conference on Computational Linguistics",
url = "https://aclanthology.org/2022.argmining-1.11",
pages = "115--125",
abstract = "Although argumentation can be highly subjective, the common practice with supervised machine learning is to construct and learn from an aggregated ground truth formed from individual judgments by majority voting, averaging, or adjudication. This approach leads to a neglect of individual, but potentially important perspectives and in many cases cannot do justice to the subjective character of the tasks. One solution to this shortcoming are multi-perspective approaches, which have received very little attention in the field of argument mining so far. In this work we present PerspectifyMe, a method to incorporate perspectivism by enriching a task with subjectivity information from the data annotation process. We exemplify our approach with the use case of classifying argument concreteness, and provide first promising results for the recently published CIMT PartEval Argument Concreteness Corpus.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="romberg-2022-perspective">
<titleInfo>
<title>Is Your Perspective Also My Perspective? Enriching Prediction with Subjectivity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Romberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jodi</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohan</namePart>
<namePart type="family">Jo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sougata</namePart>
<namePart type="family">Saha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Conference on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and in Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although argumentation can be highly subjective, the common practice with supervised machine learning is to construct and learn from an aggregated ground truth formed from individual judgments by majority voting, averaging, or adjudication. This approach leads to a neglect of individual, but potentially important perspectives and in many cases cannot do justice to the subjective character of the tasks. One solution to this shortcoming are multi-perspective approaches, which have received very little attention in the field of argument mining so far. In this work we present PerspectifyMe, a method to incorporate perspectivism by enriching a task with subjectivity information from the data annotation process. We exemplify our approach with the use case of classifying argument concreteness, and provide first promising results for the recently published CIMT PartEval Argument Concreteness Corpus.</abstract>
<identifier type="citekey">romberg-2022-perspective</identifier>
<location>
<url>https://aclanthology.org/2022.argmining-1.11</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>115</start>
<end>125</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Is Your Perspective Also My Perspective? Enriching Prediction with Subjectivity
%A Romberg, Julia
%Y Lapesa, Gabriella
%Y Schneider, Jodi
%Y Jo, Yohan
%Y Saha, Sougata
%S Proceedings of the 9th Workshop on Argument Mining
%D 2022
%8 October
%I International Conference on Computational Linguistics
%C Online and in Gyeongju, Republic of Korea
%F romberg-2022-perspective
%X Although argumentation can be highly subjective, the common practice with supervised machine learning is to construct and learn from an aggregated ground truth formed from individual judgments by majority voting, averaging, or adjudication. This approach leads to a neglect of individual, but potentially important perspectives and in many cases cannot do justice to the subjective character of the tasks. One solution to this shortcoming are multi-perspective approaches, which have received very little attention in the field of argument mining so far. In this work we present PerspectifyMe, a method to incorporate perspectivism by enriching a task with subjectivity information from the data annotation process. We exemplify our approach with the use case of classifying argument concreteness, and provide first promising results for the recently published CIMT PartEval Argument Concreteness Corpus.
%U https://aclanthology.org/2022.argmining-1.11
%P 115-125
Markdown (Informal)
[Is Your Perspective Also My Perspective? Enriching Prediction with Subjectivity](https://aclanthology.org/2022.argmining-1.11) (Romberg, ArgMining 2022)
ACL