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Introduction

Welcome to the Third Workshop on Automatic Simultaneous Translation (AutoSimTrans)! Simulta-
neous translation, which performs translation concurrently with the source speech, is widely useful in
many scenarios such as international conferences, negotiations, press releases, legal proceedings, and
medicine. It combines the AI technologies of machine translation (MT), automatic speech recognition
(ASR), and text-to-speech synthesis (TTS) and is rapidly becoming a cutting-edge research field.

As an emerging and interdisciplinary field, simultaneous translation faces many great challenges. This
workshop will bring together researchers and practitioners in machine translation, speech processing,
and human interpretation, to discuss recent advances and open challenges of simultaneous translation.

We organized a simultaneous translation shared task on Chinese-English and English-Spanish. We relea-
sed a dataset for open research, which covers speeches in a wide range of domains, such as IT, economy,
culture, biology, arts, etc.

Following the tradition of our last two workshops, we will have two sets of keynote speakers: Juan Pi-
no and Trevor Cohn from simultaneous translation, and Weiwei Wang and Wallace Chen from human
interpretation research. We hope this workshop will greatly increase the communication and cross-
fertilization between the two fields. We have accepted 7 papers that will be presented in the workshop.

We look forward to an exciting workshop.

Hua Wu, Liang Huang, Zhongjun He, Qun Liu, Wolfgang Macherey, and Julia Ive
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Keynote Talk: Invited Talk 1
Weiwei Wang

Guangdong University of Foreign Studies

Abstract: Bridging the Gap: CSE-Interpreting Scales as a Measuring Instrument for Interpreting Trai-
ning
With more than 500 undergraduate and postgraduate degree programs in translation and interpreting
(T&I) being launched over the past decade, interpreter training and education has been developing rapi-
dly in China. This creates a huge demand for testing and assessment of interpreting in the educational
context. To provide reliable measurement of interpreting competence, the CSE-Interpreting Scales were
unveiled in 2018 after 4 years of government-funded research and validation among 30,682 students,
5,787 teachers, and 139 interpreting professionals from 28 provinces, municipalities, and regions in Chi-
na. In 2022, the scales were developed from conceptual descriptors to an AI-based application to assist
in interpreting training. What are the CSE-Interpreting Scales? What are the scenarios and functions of
the scales in interpreting training? I will address these questions in my talk by elaborating on two scales
and discussing possible applications of the scales in interpreting teaching, learning and assessment.

Bio: Weiwei WANG is an Associate Professor in the School of Interpreting and Translation Studies at
Guangdong University of Foreign Studies. Her research focuses on interpreting quality assessment. She
is particularly interested in understanding developmental patterns of interpreting competence and causal
factors in competence development. Her research has been published widely in peer-reviewed journals.
She has led several research projects funded by the Ministry of Education, the National Social Science
Foundation, and the British Council. She is serving as the Deputy Secretary-General of the National
Interpreting Committee of the Translation Association of China.
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Keynote Talk: Invited Talk 2
Wallace Chen

Middlebury Institute of International Studies at Monterey (MIIS)

Abstract: Parsing Techniques in Simultaneous Interpreting and Their Implications for Automatic Si-
multaneous Translation
Human interpreters employ a wide variety of parsing techniques as dynamic, on-demand strategies to co-
pe with linguistic and communicative challenges associated with simultaneous interpreting (SI). These
techniques may include, but not limited to, paraphrasing, generalizing, normalizing, implicitating, expli-
citating, glossing, shining-through, anticipating, chunking, segmenting, conjoining, etc. – all prompted
by the interpreter’s level of experience, cognitive load, and a desire to bridge communicative gaps in the
interpreting process. While the technology of automatic simultaneous translation relies on a large set of
purpose-built training data to construct a coherent translation, human interpreters make calculated and
informed decisions, often on a case-by-case basis, when applying the afore-mentioned parsing techni-
ques for SI. This presentation will focus on the somewhat volatile nature of simultaneous interpreting by
exploring how and when the various SI techniques are applied, and how they might be able to shed new
insights on the development of automatic simultaneous translation systems.

Bio: Wallace Chen is Professor and Program Head of Chinese-English Translation and Interpretation
at the Middlebury Institute of International Studies at Monterey (MIIS). He holds an MA in Chinese-
English Translation and Interpretation (MIIS) and a Ph.D. in Corpus-Based Translation Studies (Uni-
versity of Manchester, UK). Professor Chen has been teaching Chinese-English translation and inter-
pretation (T&I) since 1997. He has over 30 years of experience in practicing T&I, providing services
to major corporations, government agencies, and international organizations spanning across Asia and
North America. Professor Chen lectures in a wide variety of T&I areas, including professional skill
development, pedagogy, T&I technology, professional assessment, T&I practice, and corpus-based T&I
studies.
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Keynote Talk: Invited Talk 3
Trevor Cohn

The University of Melbourne

Abstract: From Simultaneous Translation to Simultaneous Interpretation
Simultaneous translation is a highly challenging problem, both for humans and for machines, bringing
many additional complexities beyond offline translation. In this talk I will discuss two avenues for
advancing research automatic simultaneous translation, encompassing both algorithms and evaluation
methodology. First, I will discuss means of improving the realism of models learned from parallel tran-
slation data, based on factoring the system into two components: a programmer, which decides when
to wait for more input and when to produce translations, and an interpreter, which generates the output
tokens. Critically, our method couples the learning of these components, framed as imitation learning,
which leads to better simultaneous translation than simply learning a single component, as in prior work.
In the second part of the talk, I will revisit a core assumption underlying modern simultaneous translation
work, namely the use of parallel offline translation data for evaluation. Instead, I will argue that inter-
pretation data is a better evaluation resource. Interpretation differs substantially from offline translation
and includes a range of translation strategies humans to perform this cognitively challenging task in a
real-time setting. I will describe a small dataset we curated from the audio and transcripts of European
parliament debates. Leading simultaneous translation systems evaluated on this dataset fare quite poorly,
relative to standard translation-based evaluation corpora. I will finish by showing how we can adapt
existing methods to improve performance on this highly challenging interpretation task.

Bio: Trevor Cohn is a Professor in the School of Computing and Information Systems at The University
of Melbourne, and Director of the ARC Training Centre in Cognitive Computing for Medical Technolo-
gies. He was previously employed at the University of Sheffield and the University of Edinburgh. His
research interests focus on development of probabilistic and statistical machine learning methods for mo-
delling natural language text, with particular focus in machine translation, multilingual model transfer
and model robustness to adversarial attacks. He has projects ranging from privacy preserving learning,
ameliorating cultural bias from models of language, and natural language understanding of patent docu-
ments. He has best paper awards from top tier conferences, including EMNLP and ACL. He served as
the Programme Chair of EMNLP, architecting the “Findings” companion publication, and is an action
editor for Transactions of the ACL, among other service roles. Trevor completed his PhD in Engineering
in 2007 at The University of Melbourne.
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Keynote Talk: Invited Talk 4
Juan Pino
Meta AI

Abstract: Recent Advances in Direct Speech to Speech Translation
Speech to speech translation is the task of translating from audio in a language to audio in a different lan-
guage. Simply combining speech recognition, machine translation and speech synthesis provides a very
strong baseline but with some possible drawbacks. We propose to solve the problem in a more direct
fashion to potentially provide less error compounding, lower latency and also support translation into
unwritten languages or languages without standard writing system. In this presentation, I will describe
recent advances on direct speech-to-speech translation, systems with simultaneous capability and that
leverage real target speech.

Bio: Juan Pino is a Research Scientist at Meta AI since 2014. He studied machine translation at the Uni-
versity of Cambridge with Professor Bill Byrne. Juan is currently interested in developing end-to-end
simultaneous speech translation models.
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Findings of the Third Workshop on Automatic Simultaneous Translation

Ruiqing Zhang1 Chuanqiang Zhang1 Zhongjun He1 Hua Wu1 Haifeng Wang1

Liang Huang2 Qun Liu3 Julia Ive4 Wolfgang Macherey5

1 Baidu Inc. 2 Oregon State University 3 Huawei Noah’s Ark Lab
4 Queen Mary University of London 5 Google

Abstract
This paper reports the results of the shared
task we hosted on the Third Workshop of Au-
tomatic Simultaneous Translation (AutoSim-
Trans). The shared task aims to promote the
development of text-to-text and speech-to-text
simultaneous translation, and includes Chinese-
English and English-Spanish tracks. The num-
ber of systems submitted this year has increased
fourfold compared with last year. Addition-
ally, the top 1 ranked system in the speech-to-
text track is the first end-to-end submission we
have received in the past three years, which has
shown great potential. This paper reports the
results and descriptions of the 14 participating
teams, compares different evaluation metrics,
and revisits the ranking method.

1 Introduction

Simultaneous translation (ST), which aims to per-
form translation from source language speech into
the target language with high quality and low la-
tency, is widely used in many scenarios, such as
international conferences, live broadcasts, etc.

Generally, the research of ST falls into two cat-
egories: the cascade method, and the end-to-end
method. A typical cascade ST system consists of
an automatic speech recognition (ASR) system that
transcribes the source speech into streaming text
(Moritz et al., 2020; Wang et al., 2020a; Li et al.,
2020a), a machine translation (MT) system that
translates the text into the target language, and a
policy module lies in between them to decide when
to start translation (Oda et al., 2014; Dalvi et al.,
2018; Ma et al., 2019; Arivazhagan et al., 2019;
Zhang et al., 2020; Wilken et al., 2020). Another
branch of work proposed end-to-end ST methods
that attempt to translate from source speech to tar-
get text directly without transcribing the source
speech (Bansal et al., 2018; Di Gangi et al., 2019;
Jia et al., 2019).

We host a shared task at the Third AutoSimTrans
Workshop to promote the exploration of advanced

ST approaches. The shared task is built on the past
two editions (Wu et al., 2020; Zhang et al., 2021c).
We set up three tracks this year:

• Chinese-English Text-to-text ST track,
where participants are asked to generate real-
time English translation based on the input
Chinese text. The input is derived from
human-annotated transcriptions of TED-like
lectures, which contain speech disfluencies
but no ASR errors. We simulate streaming
speech recognition results by a series of pre-
fixes, where each n-word transcription is rep-
resented by n sentence prefixes whose lengths
increase from 1 to n.

• Chinese-English Speech-to-text track con-
siders real ST scenarios that need real-time
translation directly from speech. The partici-
pants can adopt either cascade or end-to-end
systems. The test sets for the first two tracks
are from the same set of audio so that the test
results may capture the differences brought by
different input modalities.

• English-Spanish Text-to-text track is newly
added this year. We use the UN Parallel cor-
pus1 for train and test, which is composed
of official records of the United Nations and
other parliamentary documents, with no dis-
fluencies and no ASR errors.

The objective of ST systems is to achieve high
translation quality with low latency. During the
evaluation period, each participant can submit once
a day. To examine their quality-latency trade-off
ability, the submission of each track is required to
contain multiple folders with different policies and
varying latency. Our platform supports automatic
evaluation and plots the result of each folder to one
point on a latency-quality diagram.

1https://conferences.unite.un.org/UNCORPUS/en/
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Team Organization
BIT-Xiaomi Beijing Institute of Technology & Xiaomi Inc., Beijing, China
Huawei Huawei Noah’s Ark Lab, Guangdong, China
HAU Huazhong Agricultural University, Hubei, China
USST-ECUST Univ. of Shanghai for Science and Technology & East China Univ. of Science
HZLHZ Anonymous
ZXN Zhejiang Univ. & Xiamen Univ. & North China Institute of Aerospace Engineering
TMU Tianjin Medical University, Tianjin, China
CITC Changchun Information Technology College, Jilin, China
NCIAE North China Institute of Aerospace Engineering, Hebei, China
XJTU Xi’an Jiaotong University, Shanxi, China
HIT Harbin Institute of Technology, Heilongjiang, China
ZJU Zhejiang University, Zhejiang, China
Nuctech Nuctech Company, Beijing, China
A23 Anonymous

Table 1: List of participants.

We’ve received 24 submissions from 14 teams
this year, 4 times as many as last year. The 14
participants are listed in Table 1. We analyze the
submissions and get the following findings:

• The translation quality of the systems, both
pipeline and end-to-end in the speech-to-text
track lags behind the text-to-text track by
more than 9.0 BLEU. This suggests the ne-
cessity of exploring robust speech translation
systems for pragmatic ST.

• We receive an end-to-end ST submission for
the first time in three years, which outper-
forms all pipeline-based systems submitted
this year, representing the potential of end-to-
end ST.

• Experiments comparing multiple quality esti-
mation metrics suggest that BLEURT may be
more suitable for ST than BLEU given that it
correlates best with human ratings.

We will introduce the details of the three tracks
(Section 2), report and analyze the submissions
(Section 3), and finally compare and analyze evalu-
ation and ranking metrics (Section 4).

2 Shared Task

We first introduce the corpora used in the shared
task, then describe the system evaluation method,
as well as the differences compared with the past
editions.

2.1 Dataset
The corpora provided for training and evaluation
are listed in Table 2. For the first two tracks for
Zh→En ST, we provide a large-scale text trans-
lation corpus, CWMT192, along with a speech
translation dataset, BSTC (Zhang et al., 2021b).
CWMT19 contains 9 million of Zh→En sentence
pairs collected from web, bilingual books, movies,
law documents, etc. BSTC contains 70.41 hours
of Mandarin speeches from three TED-like con-
tent producers, corresponding to about 40K source
sentences. Compared with last year, we expand
the testset of BSTC from 6 talks (1.46 hours) to
20 talks (4.26 hours). For En→Es ST, we use a
text translation corpus, the United Nations Parallel
Corpus (UN)3 to simulate the ST scenario. All data
can be obtained at the site of our shared task4 after
registration.

The two text-to-text tracks restrict participants to
use the provided corpora only, while the speech-to-
text track allows the use of additional ASR datasets.

2.2 System Evaluation
The ST systems are evaluated with respect to trans-
lation quality and latency. For translation qual-
ity, BLEU (Papineni et al., 2002) is the most com-
monly used metric. Although some net-based ap-
proaches such as BERTScore (Zhang et al., 2019)
and BLEURT (Sellam et al., 2020) have been

2http://mteval.cipsc.org.cn:81/agreement/

description
3https://conferences.unite.un.org/UNCORPUS/en
4https://aistudio.baidu.com/aistudio/

competition/detail/148/
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Corpus Subset Talks Utterances Transcription (words) Translation (words) Audio (hours)

Zh-En
BSTC (ST)

Train 215 37,901 1,004,128 620,263 64.57
Dev 16 956 24,711 15,794 1.58
Test 20 2,305 72,695 42,836 4.26

CWMT19 (MT) Train / 9,023,456 264,652,945 182,840,035 /

En-Es UN (MT)
Train / 21,911,121 517,327,737 608,514,316 /
Dev / 500 12,400 14,701 /
Test / 500 13,421 15,935 /

Table 2: The summary of our provided corpora. We calculate the number of talks (Talks), number of sentence pairs
(Utterances), number of words5 in transcription and translation, and the duration of the speeches in corresponding
corpora.

proven to be superior to BLEU in text translation,
little work has conducted experiments or used them
to evaluate ST systems. For the evaluation of la-
tency, recent work have proposed some metrics
like Average Proportion (AP) (Cho and Esipova,
2016), Average Lagging (AL) (Ma et al., 2019),
Consecutive Wait (CW) (Gu et al., 2017) and Dif-
ferentiable Average Lagging (DAL) (Arivazhagan
et al., 2019).

In our shared task this year, we adopt AL-BLEU
and CW-BLEU to evaluate systems in the text-to-
text tracks and the speech-to-text track, respectively.
AL takes the number of words that the target lags
behind the source speaker to estimate the degree
of delay. It simulates an ideal policy that generates
translation at the same speed as the speaker’s utter-
ance and measures the average number of words
that lags behind this ideal policy. CW measures
the average duration between every two WRITE
operations by calculating the average number of
source words being waited for.

We will conduct experiments and discuss alter-
native metrics for evaluating translation quality and
latency in Section 4.

2.3 Submission and Ranking

Submission: Each team can participate in multi-
ple tracks. Participants in each track are ranked
independently. Different from previous editions,
the input of the testsets this year is no longer in-
visible. Participants only need to submit the si-
multaneous translation results of the testset to our
platform, rather than Docker projects. Before the fi-
nal submission, participants can submit once a day
to view their results and those of other teams on
the leaderboard. Each submission needs to contain
N (N ≥ 1) folders containing the ST results with
different policies or models. The submissions will

5Record the number of characters in the Transcriptions for
Chinese.

be evaluated automatically and plotted to N points
on the latency-quality graph. N is determined by
the teams themselves.
Ranking: Intuitively, a system is considered bet-
ter if it generates higher quality results under the
same delay or achieves a lower delay when gener-
ating results of the same quality. In the shared task,
we rank submitted systems based on the Iterative
Monotonic Optimal Sequence (I-MOS) algorithm
(Zhang et al., 2021c). It iteratively searches for a
monotonic optimal sequence (MOS), which con-
tains the points with the best translation quality at
corresponding delays. Teams that have points se-
lected on the MOS in the kth iteration are classified
to the kth level, then removed from the candidate
teams in the k + 1th iteration. All teams of the
kth level rank higher than that of the k + 1th level.
Teams belonging to the same level are ranked ac-
cording to the proportion of points on the MOS.

2.4 Differences With Past Editions

In addition to setting up a new En-Es text-to-text
ST track, this year’s shared task has the following
two differences compared with the past editions:

• Participants submit ST results instead of
docker projects, which is much easier for par-
ticipants. For this, we released the audios and
corresponding transcription for the first two
tracks of Zh-En ST and extended the testset
from 6 talks to 20.

• This year’s shared task allows each team to
submit once per day, rather than only once
in the entire challenge period. We developed
an automated evaluation platform, enabling
participants to access their evaluation results
in real-time.

3



Rank Team Score
1 BIT-Xiaomi 7.00
2 Huawei 6.00
2 USST-ECUST 6.00
4 HZLHZ 4.50
4 HAU 4.50
6 TMU 4.00
7 CITC 3.33
8 NCIAE 3.33
9 ZXN 2.67

10 XJTU 2.00
11 HIT2 1.67
12 ZJU 1.50
13 Nuctech 1.00

Table 3: The ranking of the Zh→En text-to-text ST
track. The scores are calculated according to the I-MOS
algorithm.

3 System Results

3.1 Chinese-English Simultaneous Translation
The first two tracks are for Chinese-English ST
from Chinese text and speech, respectively. We’ve
received submissions from 13 teams: 13 entered
the text-to-text track and 4 of them also participated
in the speech-to-text track. Their latency-quality
trade-off results are plotted in Figure 1.

3.1.1 The Text-to-text track
The ranking of the 13 participants in the Zh→En
text-to-text track is shown in Table 3. We list the
approaches used by some of the participants as
follows:

• BIT-Xiaomi (Liu et al., 2022) changed the
granularity in wait-k policy (Ma et al., 2019)
from Chinese characters to words. They pro-
posed to train a streaming word segmenta-
tion model to detect Chinese word boundaries
in real-time, and performed prefix-to-prefix
training of wait-k according to the number of
words. The MT model is a Transformer-big
(Vaswani et al., 2017) model trained with data
selection, data augmentation (Sennrich et al.,
2015), R-drop (Wu et al., 2021), and noise
adding strategies to improve the model’s ro-
bustness.

• USST-ECUST (Zhu and Yu, 2022) adopted
the Transformer with 12 encoders and 6
decoders as the MT model, which is pre-
trained on a large-scale Zh-En corpus contain-

Rank Team Score
1 Huawei 2.00
2 BIT-Xiaomi 1.50
3 ZXN 1.00
3 HAU 1.00

Table 4: The ranking of the Zh→En speech-to-text ST
track.

ing 9 million sentence pairs from CWMT19
and 5.7 million pairs of pseudo data gener-
ated through self-training (He et al., 2019)
and back-translation (Sennrich et al., 2015;
Edunov et al., 2018). The model is then fine-
tuned with prefix-to-prefix training (Ma et al.,
2019) on a mixture of BSTC corpus and a sub-
set of CWMT19 that is most similar to BSTC
for better domain adaptation.

• HAU (Zhang, 2022) trained a prefix-to-prefix
model using the wait-k policy with k = 1 and
3 in the text-to-text simultaneous translation.

3.1.2 The Speech-to-text track
The ranking of the 4 participants in the Zh→En
speech-to-text track is listed in Table 4.

• Huawei (Zeng et al., 2022) built an end-to-
end simultaneous translation model based on
RealTranS (Zeng et al., 2021). It includes
a CTC-guided acoustic encoder, a semantic
encoder, and a translation decoder. The acous-
tic encoder is initialized from a pre-trained
ASR model, and the semantic encoder and the
translation decoder are initialized from a pre-
trained NMT model. In the fine-tuning stage,
they first generated pseudo ST training data
by translating the transcripts of 20,000 hours
of in-house ASR corpora into the target text,
then train the model with the multi-path wait-
k (Elbayad et al., 2019) policy on the pseudo
data together with BSTC.

• BIT-Xiaomi (Liu et al., 2022) took a pipeline
system. The audio inputs are firstly segmented
by Silero-VAD (Team, 2021), then sent to
a Transformer-based ASR model trained on
AISHELL-1 (Bu et al., 2017) and BSTC
(Zhang et al., 2021b). The recognized text
is then sent to the policy model and the MT
model to decide when to translate and pro-
duce a translation. The MT model and the

4
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Figure 1: The evaluation results of the first two tracks. The order in the legend (line by line) denotes the ranking
result, which is calculated by the I-MOS algorithm. It iteratively builds the monotonic optimal sequence (MOS) of
level k (MOS-k) and classifies teams that have points on it to the kth level. We use points of the same color but
different shapes to represent the results of teams belonging to the same level, and the teams are ranked according to
the proportion of points on the corresponding MOS.

policy module are the same as they used in
the text-to-text track.

• ZXN (Li et al., 2022) developed a pipeline
system with an audio segmentation model,
an ASR system, and a wait-k based MT
model. The audio segmentation model per-
forms endpoint detection (EPD) based on
short-term energy and zero-crossing rate (Ra-
biner and Sambur, 1975). The ASR system
includes a convolutional model with a CTC de-
coder (Graves et al., 2006) to generate pinyin
sequences, followed by a language model
based on the maximum entropy markov model
(MEMM) to produce Chinese characters. The
MT model adopts Transformer-base (Vaswani
et al., 2017) and is trained with the prefix-to-
prefix mode. The ASR model is pre-trained on
AISHELL-1 and Thchs-30 (Wang and Zhang,
2015), and the MT model is pre-trained on
CWMT19, then both are fine-tuned on the
BSTC.

• HAU (Zhang, 2022) also took a pipeline sys-
tem. They adopted DeepSpeech2 (Amodei
et al., 2016) as the ASR model, which is
trained on AISHELL-1 only without further
fine-tuning on BSTC. The ST policy and the

Text-to-text Speech-to-text
BIT-Xiaomi 48.17 31.26
Huawei 46.49 37.46

Table 5: The highest BLEU scores achieved by BIT-
Xiaomi and Huawei for the same testset with different
input modalities. The Speech-to-text track inputs audios
while the Text-to-text track inputs golden transcription.

MT model they used are the same as they used
in the text-to-text track.

Table 5 lists the highest translation quality
achieved by BIT-Xiaomi and Huawei, the two best
performing teams on the two tracks. Compared to
their performance on the text-to-text track, their
speech-to-text systems both have a BLEU degrada-
tion of over 9 points. This quality gap is brought
about by different input modalities. The speech-to-
text systems receive audio as input, so they need
an ASR model to transcribe the audio, or an end-
to-end speech translation model to generate trans-
lation directly from speech. The pipeline systems
have the problem of error propagation, and the per-
formance of the end-to-end systems is limited by
data scarcity.

This also gives us some hints that the process-
ing of speech may be the most significant factor
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Figure 2: The evaluation results of the En-Es text-to-text
ST track.

Rank Team Score
1 HAU 4.00
2 BIT-Xiaomi 3.83
3 USST-ECUST 3.08
4 ZXN 3.00
5 NCIAE 2.00
6 HZLHZ 1.00
7 A23 0.50

Table 6: The ranking of the En→Es text-to-text ST
track.

affecting the effect of simultaneous translation in
real scenes. Some work has attempted to improve
the pipeline systems by introducing an ASR error
correction model (Leng et al., 2021; Zhang et al.,
2021a), others proposed pre-training approaches to
alleviate the data scarcity problem of speech trans-
lation corpora in end-to-end systems (Wang et al.,
2020b; Pino et al., 2020; Zheng et al., 2021; Li
et al., 2020b; Zhang et al., 2022). We hope to see
more participants in future workshops investigating
how to close the performance gap between the two
tracks.

3.2 English-Spanish Simultaneous Translation
The En→Es track received submissions from 7
teams. The latency-quality trade-off results of the
En-Es track are plotted in Figure 2 and the rank-
ing is listed in Table 6. According to the system
descriptions submitted, almost all teams used the
same training policies in this track as in the Zh→En
text-to-text track.

4 Discussion

We first carry out experiments to compare different
translation quality evaluation metrics (Section 4.1),

then discuss a controversial ranking dilemma of
I-MOS algorithm in the ranking algorithm (Section
4.2).

4.1 BLEU, BERTScore, and BLEURT

Metrics r(↑) ρ(↑) τ (↑)

SYS1
SentBLEU 0.546 0.484 0.390
BERTScore 0.553 0.484 0.388
BLEURT 0.708 0.655 0.537

SYS2
SentBLEU 0.584 0.516 0.415
BERTScore 0.587 0.540 0.433
BLEURT 0.729 0.693 0.568

SYS3
SentBLEU 0.525 0.468 0.374
BERTScore 0.529 0.498 0.396
BLEURT 0.670 0.654 0.532

SYS4
SentBLEU 0.467 0.408 0.322
BERTScore 0.1356 0.467 0.368
BLEURT 0.637 0.629 0.507

SYS5
SentBLEU 0.451 0.422 0.332
BERTScore 0.518 0.522 0.414
BLEURT 0.656 0.672 0.539

SYS6
SentBLEU 0.370 0.350 0.274
BERTScore 0.475 0.480 0.376
BLEURT 0.559 0.578 0.459

Table 7: Sentence-level agreement with human ratings
on 6 ST systems. Given 6 source documents, each sys-
tem (SYSi) performs ST, and the translation results are
evaluated by sentenceBLEU (sentBLEU), BertScore,
and BLEURT with 4 references. We calculate the Pear-
son correlation (r), the Spearman correlation (ρ), and
the Kendall Tau (τ ) score between the automatic metrics
and human ratings. BLEURT has obvious advantages
over the other two metrics in all the 6 systems.

Recently, many quality estimation metrics have
been proposed to better imitate human evaluation
(Specia et al., 2021), such as RUSE (Shimanaka
et al., 2018), YiSi (Mathur et al., 2019), BERTScore
(Zhang et al., 2019), BLEURT (Sellam et al., 2020),
etc. These metrics are proven to be superior to
traditional quality evaluation metrics like BLEU
(Papineni et al., 2002) in text translation. However,
to the best of our knowledge, no work has con-
ducted experiments in the ST scenario, and almost
all ST work still takes BLEU as the criterion for
translation quality evaluation.

To keep consistent with previous work, we still

6This outlier is caused by a missing translation (one
sentence generates an empty translation). Different from
BERTScore, SentBLEU and BLEURT are less influenced
because the BERTscores are relatively high (always higher
than 0.9), for which one zero brought by empty translation
would largely degrade its Pearson correlation score.
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used the document-level BLEU7 for evaluation in
the shared task this year. Now we conduct exper-
iments to compare it with sentence-level BLEU,
BERTScore8, and BLEURT9.

4.1.1 Agreement between automatic metrics
and human ratings

To evaluate the SOTA quality estimation metrics,
we ask human annotators to assess the results
of multiple ST systems and calculate the agree-
ment between automatic metrics and human rat-
ings. Each sentence is rated to 1, 2, or 3. 1 denotes
the translation is inconsistent with the original text,
or incomprehensible; 2 denotes the translation con-
veys the main idea of the original text but with mi-
nor mistakes in grammar or word usage; 3 denotes
the translation is fully consistent with the original
text. In order to ensure uniform rating standard,
all evaluated sentences are scored by one annotator
first, and then checked by another annotator. The
two annotators are both translators who graduated
from Chinese-English translation major.

We randomly select 6 documents (including 975
source sentences in total) from the testset of the
first track for evaluation, and then select 6 ST sys-
tems with high BLEU scores on this testset (SYS1:
30.23, SYS2: 30.35, SYS3: 29.38, SYS4: 33.45,
SYS5: 42.05, SYS6: 41.27) and have they man-
ually rated. Given the simultaneous translation
result produced by 6 systems, we calculate the Pear-
son correlation (r), the Spearman correlation (ρ),
and the Kendall Tau (τ ) points between human rat-
ings and scores of different automatic metrics. As
shown in Table 7, BLEURT has a higher correlation
with human ratings compared with the other two
metrics in all the 6 systems.

4.1.2 Using different metrics for ranking
Next, we explore these metrics from the perspec-
tive of ranking. Taking the average score of all
the evaluated sentences as the ranking basis, we
wonder whether each metric would yield a rank-
ing consistent with human evaluations. We first
count the proportion of sentences with a human
rating of 2 or 3 as the acceptability for each sys-
tem. Figure 3 shows that the rank (horizontal axis)
of the six systems in terms of acceptability, from

7https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/generic/mteval-v13a.pl
8https://github.com/Tiiiger/bert_score based on

roberta-large
9https://github.com/google-research/bleurt with
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Figure 3: Human-rated acceptability vs. automatic met-
rics for the translation of 6 systems.

Metrics r(↑) ρ(↑) τ (↑)
DocBLEU 0.917 0.771 0.600
SentBLEU 0.970 0.886 0.733
BERTScore 0.968 0.886 0.733
BLEURT 0.994 1.000 1.000

Table 8: Document-level agreement with human ratings.

low to high is: SYS1 < SYS2 < SYS3 < SYS4 <
SYS5 < SYS6. Comparing the human-rated accept-
ability scores and the quality estimated by auto-
matic metrics, we find that Document-level BLEU
(DocBLEU) and Sentence-level BLEU (sentBLEU)
score SYS3 inferior to SYS2, BERTScore rates
SYS2 inferior to SYS1, and all the three metrics
rank SYS6 inferior to SYS5. The ranking results of
all the three metrics are different from those given
by the human-rated acceptability. On the contrary,
BLEURT’s ranking for the 6 systems is consistent
with the human results, indicating its higher ac-
curacy in imitating human judgment. Note that,
BERTScore rates all systems around 0.98, with no
significant differences. This might be caused by the
collapse problem (Chen and He, 2021; Yan et al.,
2021), meaning that BERT-derived representations
are somehow collapsed, so that almost all sentences
are mapped to a similar representation and produce
high similarity.

Table 8 further lists the correlation between the
automatic metrics and human acceptability for the 6
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Metrics r(↑) ρ(↑) τ (↑)

SYS3
BLEURT 0.642 0.604 0.528

+ft 0.654 0.620 0.502

SYS5
BLEURT 0.590 0.597 0.484

+ft 0.703 0.704 0.569

SYS6
BLEURT 0.526 0.544 0.439

+ft 0.639 0.643 0.516

Table 9: The correlation between human ratings and
BLEURT scores, before and after fine-tuning.

systems, demonstrating the superiority of BLEURT
to all the other three metrics.

4.1.3 Fine-tuning BLEURT on human
annotations

We further attempt to improve the performance of
BLEURT by fine-tuning on some human ratings.
We first construct a quality estimation training set
consisting of 975× 3× 4 = 11700 triples <hypo,
ref, score> built by pairing the ST results (hypo)
and human ratings (score) of three systems (SYS1,
SYS2, and SYS4) with corresponding 4 references
(ref). Then we fine-tune BLEURT on this training
set and evaluate its performance on the remaining
three systems. Here we use BLEURT-Base10 for
faster training.

The improvements brought by fine-tuning is
shown in Table 9. After fine-tuning, the corre-
lation of almost all systems has been significantly
improved, especially for SYS5 and SYS6.

4.2 The ranking dilemma
In the shared task, we take the I-MOS algorithm for
ranking. It iteratively builds a monotonic optimal
sequence (MOS) and considers the proportion of
optimal points as the ranking basis. On the quality-
latency figure, the MOS is a sequence of optimal
points with increasing translation quality and la-
tency, and a point is considered optimal if there
is no other point or line above it at an identical
latency. Although I-MOS is adaptive to uncertain
submission results, it has one drawback, that is, the
MOS curve is bound to select the leftmost point
regardless of its translation quality, because the left-
most point is definitely an optimal point. Therefore,
I-MOS somehow encourages participants to submit
only one point with extremely low latency, making
the team ranked first place by the I-MOS algorithm,
the leftmost point of Figure 2 is such a case.

10https://storage.googleapis.com/bleurt-oss/

bleurt-base-128.zip

q
u
al
it
y

latency

Team1

Team2

MOS-1(V1)

MOS-1(V2)

Figure 4: An example to illustrate the ranking dilemma
of the I-MOS ranking algorithm. The vanilla I-MOS
algorithm calculates MOS-1 as the yellow dotted curve
(V1). According to V1, Team2 would rank higher than
Team1, although its left two points are unconvincing
because of their extremely low quality. After applying
our proposed remedy, the left two points of Team2 are
removed and Team1 ranks higher based on the modified
MOS-1(V2).

To eliminate the defect of I-MOS, we propose to
add two strategies to future shared tasks:

1. We require each team to submit at least two
points with different delays to make a latency-
quality trade-off.

2. Before running the I-MOS algorithm, we first
scan to remove the leftmost points whose qual-
ity is worse than others’ submissions. If all
submission points of a team are removed, the
team will be ranked last.

See Figure 4 for example. The vanilla I-MOS
algorithm would generate the dashed curve as
MOS-1 (V1), causing Team2 to rank higher
(Team1 scores 3/4, Team2 scores 3/3), al-
though its left two points are unconvincing
due to their extremely low quality. But after
applying this strategy, we will remove the two
points of Team2 because no other team has
points with inferior quality compared to them.
Then Team2 will be scored to 1/3. We don’t
have to worry whether this strategy will lead
to unfairness if Team2 is designed for ST at
low latency. If Team2 doesn’t deliberately
take advantage of the defect of I-MOS, they
should submit more results at higher latency,
at least submit their full-sentence translation
result.

5 Conclusion and Future work

This paper presents the results of the simultaneous
translation shared task we hosted at the 3rd Work-
shop on Automatic Simultaneous Translation work-
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shop. The shared task includes three tracks, two
text-to-text tracks in different languages, and one
speech-to-text track. We analyze the submissions
from 14 participating teams and have the following
inspirations for future ST work:

1. Robust ST model: The results of the first
two tracks reveal there exists a great gap be-
tween using speech input and its correspond-
ing golden transcriptions. Therefore, it is im-
portant to explore robust speech translation
systems in real ST scenes.

2. End-to-end ST: In the speech-to-text track,
we received an end-to-end ST submission sys-
tem for the first time in three years. It in-
tegrates a read-write policy into an end-to-
end speech translation model and outperforms
all the cascaded systems, representing the po-
tential of end-to-end simultaneous translation
models.

3. Quality Evaluation: Although recently
proposed neural network-based metrics are
proven superior to BLEU for standard text
translation, ST work always takes BLEU for
quality estimation. We compare multiple met-
rics under the ST scenario and verify that
BLEURT is more suitable than BLEU for ST
in terms of correlation with human ratings.

4. System Evaluation: We propose the I-MOS
algorithm as well as its revised version for
system ranking. Considering both quality and
latency is crucial for a practical ST system.
However, the quality-latency metric for ST
systems is rarely studied. We suggest further
study on this topic.

In future shared tasks, we will make the follow-
ing changes:

1. Submission: Add a requirement that each
submission should contain at least two points
with different delays to make a latency-quality
trade-off.

2. Criterion: Use BLEURT to replace BLEU
for its better correlation with human ratings.

3. Ranking: Removing the leftmost points
whose quality is worse than others’ submis-
sion before running the I-MOS algorithm.
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Abstract

Simultaneous speech translation (SimulST) sys-
tems aim at generating their output with the
lowest possible latency, which is normally com-
puted in terms of Average Lagging (AL). In this
paper we highlight that, despite its widespread
adoption, AL provides underestimated scores
for systems that generate longer predictions
compared to the corresponding references. We
also show that this problem has practical rel-
evance, as recent SimulST systems have in-
deed a tendency to over-generate. As a solu-
tion, we propose LAAL (Length-Adaptive Av-
erage Lagging), a modified version of the met-
ric that takes into account the over-generation
phenomenon and allows for unbiased evalua-
tion of both under-/over-generating systems.

1 Introduction

Simultaneous speech-to-text translation (SimulST)
is the task in which the generation of the textual
translation in the target language starts before the
entire audio input in the source language has been
ingested by the model. The need to have high
quality translations in the shortest possible time
therefore becomes the main objective of SimulST
systems, which have to satisfy specific time re-
quirements depending on the application scenarios.
These requirements are usually expressed in terms
of latency, that is the elapsed time between the
pronunciation of a word and the generation of its
textual translation. How latency is measured hence
plays a crucial role in systems evaluation.

The SimulST task was initially addressed using
cascaded models (Fügen et al., 2007; Oda et al.,
2014) that divide the translation process into two
steps: simultaneous automatic speech recognition
(Jaitly et al., 2016; Rao et al., 2017), and simulta-
neous machine translation (Cho and Esipova, 2016;
Gu et al., 2017). For this reason, the first latency
metrics were designed to evaluate simultaneous
machine translation (SimulMT) systems (Cho and

Esipova, 2016; Cherry and Foster, 2019; Elbayad
et al., 2020). Among them, Average Lagging –
AL – (Ma et al., 2019) is the most popular one,
and its adaptation to SimulST by Ma et al. (2020a)
has become a widely adopted (Ma et al., 2020b;
Zeng et al., 2021; Chen et al., 2021; Liu et al.,
2021) de facto standard.1 The adaptation by Ma
et al. (2020a) sparks from a weakness observed
in the original formulation of the metric. Being
susceptible to under-generation, it results in biased
evaluations favouring systems that produce shorter
predictions compared to the reference. However,
though successful in correcting this behaviour, the
proposed adaptation did not consider the opposite
case of over-generation, which occurs when the
prediction is longer than the reference.

To fill this gap, in this paper we introduce LAAL
(Length-Adaptive Average Lagging):2 a simple yet
effective extension of AL that takes into account
also over-generation and allows for fair SimulST
systems comparisons. After a brief explanation of
AL calculation (Section 2), we expose its incorrect
behaviour in presence of over-generation phenom-
ena (Section 3) and show that over-generation is
actually present in the output of recent SimulST
systems (Section 4). Then, we present the new
LAAL metric (Section 5), whose computation is
adjusted at sentence level by looking at the length
of model predictions. Through examples, we show
that, unlike the previous AL formulation, our met-
ric is able to fairly evaluate both under- and over-
generating systems. We conclude our work with
a discussion (Section 6) about problems that still
need to be solved for latency computation, remark-
ing that our proposal represents a first step toward
a more reliable assessment of SimulST systems

1For instance, the IWSLT SimulST Shared Task (Anas-
tasopoulos et al., 2021) relies on AL to divide the systems
in different latency regimes (low, medium, high) and BLEU
(Post, 2018) to rank the them based on translation quality.

2The code is available at: https://github.com/
hlt-mt/FBK-fairseq.
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performance.

2 Average Lagging

The idea behind the AL metric is to quantify how
much time the system is out of sync with the
speaker. In SimulST, the input sequence is rep-
resented as a stream of audio speech in the source
language X = [x1, ..., x|X|] where each element
xj is a raw audio segment of duration Tj , the ref-
erence as a stream of words in the target language
Y∗ = [y∗1, ..., y

∗
|Y∗|], and the model translation as

a stream of predicted words Y = [y1, ..., y|Y|]. In
the simultaneous setting, a system starts to generate
a partial hypothesis while it continues to receive an
incremental stream of input. This implies that, to
generate the yi target word at time j, it has access
to X1:j = [x1, ..., xj ] with j < |X|.

Therefore, the delay with which the yi word is
emitted is di =

∑j
i=1 Ti. Using this notation, in

(Ma et al., 2020a) Average Lagging was initially
defined as follows:

AL =
1

τ ′(|X|)

τ ′(|X|)∑

i=1

di − d∗i (1)

d∗i = (i− 1) ·
∑|X|

j=1 Tj

|Y| (2)

where τ ′(|X|) = min{i|di =
∑|X|

j=1 Tj} is the
index of the target token when the end of the source
sentence is reached and d∗i represents an oracle that,
perfectly in sync with the speaker, starts to emit
words as soon as the speech starts.

However, the authors noticed that this adaptation
was not robust for models that tend to stop gener-
ating the hypothesis too early, that is systems that
under-generate. This phenomenon is more likely
to happen in SimulST than in SimulMT, for which
AL was first proposed. For instance, the presence
of long pauses in the speech may induce systems
to generate the end of sentence token too early,
even if the source utterance is not yet complete. As
observed by the authors, when this phenomenon
occurs, the lagging behind the oracle becomes neg-
ative. It follows that relatively good latency-quality
trade-offs can be achieved thanks to inappropriate
AL discounts in case of under-generation, while
this does not reflect the reality. Thus, in (Ma et al.,
2020a), Equation 1 was redefined as:

d∗i = (i− 1) ·
∑|X|

j=1 Tj

|Y∗| (3)

assuming that the oracle delays d∗i are computed
based on the reference length rather than on the
system hypothesis length.

3 The Problem of Over-Generation

In this paper, we point out a major issue of AL
that arises in presence of over-generation. As we
will see, AL improperly favors over-generating sys-
tems, potentially leading the community to wrong
conclusions due to biased evaluations. To illustrate
how over-generation affects AL computation, we
consider a real example from the English→Spanish
(en-es) section of MuST-C (Cattoni et al., 2021) tst-
COMMON translated by the state-of-the-art Cross
Attention Augmented Transducer (CAAT) system
(Liu et al., 2021).

As shown in Figure 1, the prediction suffers from
over-generation, especially in the first part of the
sentence where more target words are produced
compared to the reference. The system translates
“En primer lugar,” instead of “Primero,”, forcing
all the predicted words to compare with the suc-
cessive word in the reference. For instance, “es”
in the CAAT output is computed against “juego”
in the oracle and its very low lagging (49ms) is
a considerable underestimation of the correct lag-
ging with respect to the “es” word in the oracle
(763ms). Likewise, “de” is assigned a negative
lagging (−62ms) instead of the 652ms delay with
respect to the time of “de” in the oracle. Finally,
all the words generated before the end of the utter-
ance (in our example 5000ms) and exceeding the
reference length are compared with the last word
of the oracle; the same happens to the first word
emitted when the utterance is over, while the other
words after the end of the utterance are ignored. As
a result, the AL of CAAT output for this sentence
is 198ms, an extremely low latency that does not
reflect the truth. Indeed, if we correctly align and
compare the words in the system output and the
oracle, we see that lagging is on average 846ms.3

This represents a problem, since the AL metric is
rewarding an over-generating system, potentially
hindering a fair comparison with other models.

In light of these observations, two questions
arise. First, what are the conditions leading to bi-
ased, i.e. underestimated, AL values? The example
above shows that the problem arises when: i) the
system over-generates, and ii) the over-generated
words appear before the utterance ends (the earlier

3The detailed calculation is presented in Appendix A.
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Figure 1: Example of AL computation between the oracle delays (in green) and the system delays (in blue). The
lagging values (in red) are computed as the difference between the system and the oracle delays (the mapping is
represented by an arrow). The 198ms AL is obtained by dividing the sum of the lagging (3379ms) by its count (17).

in time, the lower the final AL score will be). Sec-
ond, why was this problem overlooked when AL
was introduced? To answer this question, recall
that AL for SimulST was initially proposed to eval-
uate systems showing a biased behaviour toward
under-generation, with predictions length reach-
ing at most the reference length. Indeed, earlier
SimulST systems (Ma et al., 2020b) were designed
to emit only one word at each time step. Conse-
quently, even in the case of over-generation, it was
extremely unlikely for the number of words emit-
ted before the end of the utterance to be higher than
the number of words in the reference. Moreover,
additional words (if any) were generated only once
the utterance was over. As mentioned above, the
current AL implementation ignores all but the first
word emitted at the end of the utterance. There-
fore, the over-generation occurring at the end of the
utterance does not affect the metric computation.
Instead, AL is not robust to over-generation if it
occurs before the end of the utterance, an extremely
unlikely behavior in early systems but frequent in
more recent ones, as we will see in the next section.

4 Over-generation frequency

To quantify the impact of over-generation on sys-
tem evaluation, we check how frequently it occurs
in the output of three SimulST systems: CAAT,
the wait-k model by Ma et al. (2020b), and an of-
fline model with the wait-k policy applied only
at inference time (Papi et al., 2022; Gaido et al.,
2022). We run three systems on the en-es section
of MuST-C tst-COMMON by varying the k value
at inference time in the range {3, 5, 7, 9, 11}. We
measure over-generation in terms of average word
length difference (AWLD) between systems pre-
dictions and the corresponding references, that is:

AWLD =
1

N

N∑

s=1

|Y| − |Y∗| (4)

where N is the number of samples in the corpus.
Accordingly, positive AWLD values indicate that
system predictions are on average longer than the
reference (over-generation), while negative values
indicate systems tendency to under-generate.

Model k=3 k=5 k=7 k=9 k=11
wait-k -5.57 -3.82 -2.30 -1.13 -0.74

offline wait-k 0.48 0.49 0.53 0.74 0.80
CAAT 1.57 0.96 0.61 0.35 0.18

Table 1: AWLD on MuST-C en-es tst-COMMON.

Table 1 shows that the wait-k system under-
generates – as already noticed by Ma et al. (2020b)
– while both CAAT and offline wait-k ones over-
generate. In addition, while for the offline wait-k
model the over-generation phenomenon is quite
constant for each k value, for CAAT this diminishes
as k increases. This indicates that over-generation
is not an isolated phenomenon affecting only few
sentences. On the contrary, it frequently occurs and
automatic evaluation should take this into account.

5 Length Adaptive Average Lagging

Based on the observations made in Sections 3 and
4, we propose LAAL (Length-Adaptive Average
Lagging), a modified version of AL accounting also
for the over-generation phenomena. LAAL defines
the oracle delays by dividing the utterance length
by the maximum between the reference and the
model prediction length. Specifically, we consider
the reference length when the prediction is shorter
(under-generation), and the prediction length when
the prediction is longer (over-generation). This
means that the correction is made at sentence level,
making the metric applicable to a system disregard-
ing its under- or over-generation tendency.

Figure 2 shows both the under-generation (in
blue) and the over-generation (in green) cases. An-
alyzing the under-generation case, we can clearly
see the motivation behind the correction made by
Ma et al. (2020a): if we consider the prediction
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Figure 2: Example of under-generation (in blue), and
over-generation (in green). The reference translation is
represented by the red dashed line.

length (|Y1|) in the AL computation and the pre-
diction is too short, the system is favoured since
negative delays are summed (the blue straight line
is mainly below the blue dashed line). A more
reliable evaluation is obtained by considering the
reference length (|Y∗|), since the straight blue line
is always above the dashed red line. By analyzing
the over-generation case, we observe the opposite
problem: if we consider the reference length (|Y∗|)
in the AL computation and the prediction is too
long (|Y2| > |Y∗|), the system is favoured since
negative delays are summed (the straight green line
stays almost always below the red dashed line).
This can be corrected by considering the prediction
length (|Y2|) instead. Therefore, to make a more
reliable evaluation where neither under-generation
nor over-generation are rewarded, we have to take
the maximum between |Y∗| and |Y| in the de-
lay computation (the two conditions are: |Y∗| if
|Y| ≤ |Y∗|, and |Y| if |Y| > |Y∗|). Accordingly,
Equation 3 can be modified to obtain LAAL as:

d∗i = (i− 1) ·
∑|X|

j=1 Tj

max{|Y|, |Y∗|} (5)

The difference between applying AL and LAAL
to evaluate our three systems is shown in Table 2.
As we can see, the LAAL of the wait-k system is
almost equal to the AL, with differences from 17 to
73ms. Conversely, for the offline wait-k system we
notice a quite constant increment in LAAL of about
120ms while for the CAAT system we observe that
LAAL is visibly greater than AL, with differences

from 117 to 283ms that are more marked at low
latency. These differences are coherent with the
over-generation trend observed in Table 1.

Model Metric k=3 k=5 k=7 k=9 k=11

wait-k AL 1761 1970 2272 2582 2931
LAAL 1778 2001 2332 2655 3003

offline AL 1522 1959 2463 2926 3350
wait-k LAAL 1682 2093 2588 3043 3457

CAAT AL 735 1149 1533 1905 2265
LAAL 1018 1365 1708 2046 2382

Table 2: AL and LAAL results in ms of the wait-k and
CAAT systems on MuST-C en-es tst-COMMON.

Going back to the example in Figure 1, the la-
tency value computed with LAAL is 707ms. Com-
pared to the AL value of 198ms, this is much closer
to the real measure of 846ms calculated in Section
3. In light of these observations, we can conclude
that the LAAL metric gives a more reliable evalua-
tion of the SimulST systems compared to AL.

6 Limitations

The proposed LAAL metric is a first step toward
a more accurate evaluation of SimulST systems.
Although in this work we focused on the over-
generation problem, we did not address another
limitation of AL (and, in turn, of LAAL). The prob-
lem is that, as shown in Section 2, AL compares the
system output with an oracle that emits only one
word at each time step, each one with a fixed word
duration.4 This means that, in its computation, we
assume that the reference words are uniformly dis-
tributed in each utterance. However, considering
that the amount of information contained in audio
segments of the same length could be extremely
different, this represents an unrealistic approxima-
tion. For instance, a speech segment can contain
silences, long pauses, and the speech rate can vary
considerably. As a consequence, the latency scores
obtained can still largely differ from the latency
experienced by the user. This advocates for the
development of more human-centric solutions that
go beyond AL-like metrics despite their success,
accounting for different audio phenomena and their
impact on the actual latency perceived by the users,
also considering the visualization strategy selected
(Karakanta et al., 2021; Papi et al., 2021). We leave
this line of investigation for future work.

4In our example in Figure 1, the word duration is 357ms
and is computed dividing the source audio duration (5000ms)
by the reference length (14).
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7 Conclusions

We showed through examples based on real sys-
tems that the current Average Lagging computa-
tion is inadequate to correctly measure SimulST
performance in presence of over-generation phe-
nomena. To overcome this problem, we proposed
Length-Adaptive Average Lagging (LAAL), a la-
tency metric that can effectively handle both under-
and over-generation at sentence level, leading to a
more reliable evaluation of SimulST systems.
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Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar.
2017. Exploring architectures, data and units for
streaming end-to-end speech recognition with rnn-
transducer. In 2017 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages
193–199. IEEE.

Xingshan Zeng, Liangyou Li, and Qun Liu. 2021. Real-
TranS: End-to-end simultaneous speech translation
with convolutional weighted-shrinking transformer.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 2461–2474,
Online. Association for Computational Linguistics.

A Example Manual Latency Calculation

To manually compute the latency measure of the
example shown in Figure 1, we compare the model
output words to the reference words of the oracle
by correctly aligning them. For instance “En pre-
men lugar,” of the model prediction is aligned to
“Primero,” of the oracle, “es” of the model predic-
tion to “es” of the oracle, and so on. Therefore, the
lagging calculation will be the following:

(1120− 0) + (1120− 357) + (2080− 714)+

(2080− 1071) + (2080− 1428) + (2080− 1785)+

(3040− 2142) + (3040− 2500) + (4000− 2857)+

(4000− 3214) + (4960− 3571) + (4960− 4285)+

(5000− 4642) = 10994

Then, we divide the lagging sum of 10994ms by
their count (13) to obtain the latency of 846ms.

17



Proceedings of the Third Workshop on Automatic Simultaneous Translation, pages 18 - 21
July 15-16, 2022 ©2022 Association for Computational Linguistics

System Description on Automatic Simultaneous Translation Workshop
Zecheng Li1*, Yue Sun2, and Haoze Li3

1Zhejiang University, Hangzhou, China
2Xiamen University, Xiamen, China

3North China Institute of Aerospace Engineering, Langfang, China
1lizechng@zju.edu.cn
2njauyuesun@qq.com
3lohanz@foxmail.com

Abstract

This paper describes our system submitted on
the third automatic simultaneous translation
workshop at NAACL2022. We participate in
the Chinese audio→English text direction of
Chinese-to-English translation. Our speech-to-
text system is a pipeline system, in which we
resort to rhymological features for audio split,
ASRT model for speech recoginition, STACL
model for streaming text translation. To trans-
late streaming text, we use wait-k policy trained
to generate the target sentence concurrently
with the source sentence, but always k words
behind. We propose a competitive simultane-
ous translation system and rank 3rd in the audio
input track. The code will release soon.

1 Introduction

Simultaneous translation refers to translating the
message from the speaker to the audience in real-
time without interrupting the speakers, which is a
challenging task and has become an increasingly
popular research field in recent years.

In this paper, we describe our system submit-
ted at the 3rd automatic simultaneous translation
workshop, which consists of a rhymeological fea-
tures based audio split model, an end to end speech
recognition model and a wait-k(Ma et al., 2019)
based streaming text translation model. The sys-
tem input is Chinese audio file and the output is
English translation text. A temporary Streaming
transcription is obtained by audio split and speech
recognition model, then transmitted into machine
translation model to get the target system output.

For automatic audio split model, we calculate
the rhythmological features(Weninger et al., 2013)
of the audio input, resort to adaptive policy to set
short-term energy threshold and zero crossing rate
threhold for speech split. For automatic speech
recognition model, we use ASRT model1, which
is based DCNN model and CTC decoder(Graves

1https://github.com/nl8590687/ASRT_SpeechRecognition

et al., 2006). Whilst, we expand the training data
set by adding Aishell-1(Bu et al., 2017) and Thchs-
30(Wang and Zhang, 2015) datasets. For streaming
text translation, our model is based on STACL(Ma
et al., 2019). We use some human rules and the
pre-trained language model to filter the parallel
corpus. At the step of inference, we apply the wait-
k words policy. Both the pre-processing and post-
precessing are applied to improve the terminology
translation and deal with the word error produced
by the ASR system.

Since our submission is a pipeline system, the
rest of this paper describes separately regards to
audio split, automatic speech recognition and mat-
chine translation sub-modules. We firstly describe
the training and development datasets we used, then
the data precessing methods is introduces. Sec-
ondly, we describe our system architecture and
experiment results. Lastly, we draw a conclusion
of our system by analyzing the experiments.

2 Dataset

For audio data of ASR, we use qianyan audio
datasets provided by NAACL workshop(Zhang
et al., 2021), Aishell-1(Bu et al., 2017), Thchs-
30(Wang and Zhang, 2015). For text data of MT,
we use CWMT192 and the simultaneous translation
corpus provided by the organizer of the workshop.

2.1 Audio data

For qianyan audio datasets, we split each audio
into sentences according to the sentence-level tran-
scription. After processing, the blank part of all
entire audio files was removed.

For other datasets, we firstly deal with transcrip-
tion files by using rules to get path and filename
of every transcription. Then using wave library to
read audio files to get the duration time of each
audio.

2http://mteval.cipsc.org.cn:81/agreement/description
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Data Source Duration Size
Qianyan(NAACL) 65h 5.4G

Aishell-1 178h 14.51G
Thchs-30 40h 6.01G

Table 1: Zh-En audio training datasets.

In order to mitigate the matching issues between
audio file and transcription text, we use pre-trained
ASRT model to produce pronunciation results from
audio input, and then obtain streaming text from
pronumciation models. Table 1 shows the number
of training data.

2.2 Text data

For CWMT19 and Baidu Speech Translation
Corpus(BSTC)(Zhang et al., 2021) datasets, we
firstly filter out the sentence whose English sen-
tence is longer than 120 words. Meanwhile, there
are a few Chinese characters in the data which are
traditional characters. We convert them to sim-
plified ones. Then all Chineses sentences are seg-
mented with Jieba Chinese Segmentation Tool3 and
all English sentences are tokenized and truecased
with Moses4. Lastly, Both Chinese and English
data are encoded by BPE(Sennrich et al., 2015)
with Subword-NMT5 to train a bytes pairs encod-
ing model.

3 System description

Our system consist of a rhymeological features
based audio split model, an end to end speech
recognition model, and a wait-k based streaming
text translation model. The model training pro-
cess for speech recognition and machine transla-
tion model are implemented on a device with four
GPUs of Nvidia 1080ti.

3.1 Audio split

For automatic audio split model, we use the tra-
ditional acoustic methods. We firstly calculate the
rhythmological features of the audio input based on
Librosa audio processing library6 and the openS-
MILE toolkit(Eyben et al., 2010). According to
short-term energy and zero crossing rate of the
rhythmological features, we can detect the endpoint
of voice. This can detect all valid speech parts of a

3https://github.com/fxsjy/jieba
4https://github.com/moses-smt/mosesdecoder
5https://github.com/rsennrich/subword-nmt
6https://github.com/librosa/librosa

Figure 1: Audio Split Process. The solid red line is the
reult of Step-1, and the dashed green line is the result of
Step-2

Parameter Step-1 Step-2
Frame length 400 240

Min. turbid interval 25 20
Short-term energy threhold 1.0 0.4
Zero crossing rate threhold 0.8 1.2

Table 2: Audio split model parameters.

section of speech. The endpoint detection consists
of two steps. The first step is the overall endpoint
detection used to segment the long audio file, the
second step is the fine-tune of the splited audio.
The audio split process is shown in Figure 1. The
super-parameters we use are shown in the Table 2.

3.2 Speech recognition
The speech recognition model we use is ASRT

model, based on deep convolutional neural network
and long-short memory neural network, attention
mechanism and CTC to implement.

We firstly limit the maximum length of splited
audio to 16 seconds, as the input of ASRT model.
The speech recognition model will output the cor-
responding pronunciation sequence. Then we re-
sort to probability map based maximum entropy
Markov model to convert the pronunciation se-
quence to recogized text. To improve the recog-
nition accuracy, we use the model pre-trained on
AiShell-1 and Thchs-30 datasets and fine-tune on
audio dataset provided by NAACL workshop. We
list the model configuration in Table 3

3.3 Machine translation
We use STACL as our machine translation

model. We train the model for over two days,

19



Configuration Value
Audio length 1600
Feature length 200
Label length 64

Channels 1
Output size 1428
Optimizer Adam

Table 3: Speech recognition model configuration

Configuration Value
Encoder/Decoder depth 6

Attention heads 8
Word Embedding 512

Chinese Vacabulary size 10000
English Vacabulary size 10000

Optimizer Adam

Table 4: Machine translation model configuration

the BLEU(Papineni et al., 2002) score increased
rapidly at the beginning and the growth slowed af-
ter 20 hours. After the loss converged, we save
the last checkpoint as the final model. We list the
model configuration in Table 4 and training param-
eters in Table 5.

The simultaneous policy we use is wait-k, which
first wait k source words, and then translates con-
currently with the reset of source sentence, i.e., the
output is always k words behind the input.

We implement fine-tuning on the STACL model
using the BSTC dataset to improve the translation
quality on simultaneous translation task. Since
fine-tuning is effective to build a domain-adaptive
model.

4 Experiment

In this section, we evaluate our system on the
development set of the Baidu Speech Translation
Corpus. The two used metrics are case-sensitive
detokenized BLEU(Papineni et al., 2002) and Con-
secutive Wait(CW)(Gu et al., 2016), for translation
quality and latency respectively. CW considers on

Parameter Value
Label smoothing 0.1

Learning rate 2.0
Warmup steps 8000

Maximum sentence length 120

Table 5: Machine translation model training parameters

Figure 2: Experimental Result of speech-to-text track

how many source words are waited for consecu-
tively between two target words, and thus larget
CW means longer latency.

We set the threshold k in the wait-k policy to
various values and get multiple results, as shown
in Figure 2. Due to the speech in the development
set is difficult for ASR model trained ourselves,
resulting in a high character error rate. The errors
caused by ASR are brought to MT, and thus the
BLEU is much lower than that in the text-to-text
track.

5 Conclusion

This paper describe our submission to the 3rd
automatic simultaneous workshop at NAACL2022.
We detail our process of data filtering and model
training. The Consecutive Wait(CW) of the best
point reached to 14.06, while we get the BLEU
value of 6.17 in the audio input track. In future
work, we will continue to research on end-to-end
speech translation model.
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Abstract

This paper shows my submission to the Third
Automatic Simultaneous Translation Workshop
at NAACL2022. The submission includes Chi-
nese audio to English text task, Chinese text to
English text tast, and English text to Spanish
text task. For the two text-to-text tasks, I use the
STACL model of PaddleNLP. As for the audio-
to-text task, I first use DeepSpeech2 to trans-
late the audio into text, then apply the STACL
model to handle the text-to-text task. The sub-
mission results show that the used method can
get low delay with a few training samples.

1 Introduction

The submitted system consists of two parts. One is
audio to text system, which can translate Chinese
audio into English text. The second part is the text-
to-text model, which can translate source text into
the target language.

In the text-to-text translation task, the used sys-
tem is STACL model (Ma et al., 2019). All training
data are processed by Byte Pair Encoding (Sen-
nrich et al., 2016). In addition, the strategies used
by the model in training and inference are the same.
For example, if the wait-k strategy in inference is
1, the wait-k in training is also 1.

In the audio to text translation task, the Deep-
Speech2 model (Amodei et al., 2015) is used as
the preprocessing of the STACL model. The Deep-
Speech2 model can translate audio (Chinese) seg-
ments into text (Chinese) segments and then input
the segments into the STACL model to generate
the target-language text.

The submitted results show that the used STACL
model has a low delay for text translation tasks.
But the system can only generate the results with a
high delay in the audio translation task.

The rest of the paper is organized as follows.
Section 2 describes the training data used in the
submitted system. Section 3 describes the model,

training strategy, and results. The conclusions are
given in Section 4.

2 Datasets

In this section, I describe the Datasets.

2.1 Zh-En Text Translation Dataset

The dataset used for the Chinese-to-English(Zh-
En) translation task is extracted from AST, which
is provided by the NAACL workshop. This data
set contains 214 JSON files, and each JSON file
contains parallel Chinese vs. English corpus. The
data, which is extracted from these JSON files, con-
tains 37,901 Chinese vs. English samples. After
byte pair encoding, the samples are used to train
the Zh-En translation model.

The BPE vocabulary of the Zh-En translation
task can be found in the Github project of Pad-
dleNLP (Contributors, 2021).

2.2 En-Es Text Translation Dataset

The dataset used for the English-to-Spanish(En-Es)
text translation task was obtained from the United
Nations Parallel Corpus(Ziemski et al., 2016). The
En-Es dataset contains 21,911,121 samples. After
byte pair encoding, the dataset is used to train the
En-Es text translation model.

For obtaining the BPE vocabulary, I segment
the source dataset into subword units by Subword
Neural Machine Translation (Sennrich et al., 2015).
The code for segmentation can be found in (Sen-
nrich, 2021).

2.3 Audio-to-Test Dataset

The training data of the Chinese speech recognition
model is AISHELL (Bu et al., 2017), which is
an open-source Mandarin speech corpus. In the
submitted system, I only use the pre-trained model
of the DeepSpeech2 model on AISHELL.

22



Parameter Value
wait-k 1 or 3
max epoch 30
batch size 512
learning rate 2.0
max length 256
n layer 6

Table 1: Training parameters in Zh-En translation model

3 Models and Results

This section shows the models used in the submit-
ted system and discusses the results.

3.1 Text Translation System

3.1.1 STACL model
In the text translation task, the model is STACL
(Ma et al., 2019), which is a translation architecture
for all simultaneous interpreting scenarios. For
train the model, the wait-k strategy is adopted. The
model will wait for k words of the source text and
then start to translate. For example, when k is 2,
the model only starts translating the first word of
the target language after obtaining the second word
of the source text.

In the inference process, the model decodes one
word at a time. When the sentences to be trans-
lated are all read, the untranslated sentences will
be completed at once.

3.1.2 Results in Zh-En task
In the Zh-En translation task, I trained the model
with wait-k = 1 and wait-k = 3. The details of
training parameters are shown in table 1.

When the wait-k is 1, the AL of the submitted
result is -1.28, and the BLEU is 14.86. When the
wait-k is 3, the AL is -0.52, and the BLUE is 14.84.
The two results have almost the same accuracy,
demonstrating that the used dataset may not be
sufficient for the translation task.

3.1.3 Results in En-Es task
In the En-Es translation task, the max epoch is set
as 1, and other parameters are the same as table 1.

The AL of the submitted result is -1.61, and the
BLEU is 11.82.

3.2 Audio Translation System

3.2.1 DeepSpeech2 model
Deepspeech2 is an end-to-end automatic speech
recognition system based on the PaddlePaddle deep

Figure 1: Frame for audio translation system

learning framework (Amodei et al., 2015). In order
to translate the speech data into the correspond-
ing target-language text, I first segment the audio,
use deepspeech2 to covert the voice segment into
text, and then translate the recognized text into the
target language through the STACL model. Fig-
ure 1 shows the workflow of speech recognition
translation.

3.2.2 Results
Since each segment contains multiple Chinese char-
acters, decoding only one character at a time will
lead to excessive delay (CW value). To overcome
this issue, I decoded two characters at once. The
CW of submitted results is 19.21, and the BLEU is
7.3.

4 Conclusion

This paper describes my submitted system at the
Third Automatic Simultaneous Translation Work-
shop. The system submitted has a low delay. I will
conduct a further study about the speech recogni-
tion strategy in the future.
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Abstract

This paper describes the system submitted to
AutoSimTrans 2022 from Huawei Noah’s Ark
Lab, which won the first place in the au-
dio input track of the Chinese-English transla-
tion task. Our system is based on RealTranS,
an end-to-end simultaneous speech translation
model. We enhance the model with pretrain-
ing, by initializing the acoustic encoder with
ASR encoder, and the semantic encoder and
decoder with NMT encoder and decoder, re-
spectively. To relieve the data scarcity, we
further construct pseudo training corpus as
a kind of knowledge distillation with ASR
data and the pretrained NMT model. Mean-
while, we also apply several techniques to im-
prove the robustness and domain generaliz-
ability, including punctuation removal, token-
level knowledge distillation and multi-domain
finetuning. Experiments show that our system
significantly outperforms the baselines at all
latency and also verify the effectiveness of our
proposed methods.

1 Introduction

Simultaneous Speech Translation (ST) task (Fü-
gen et al., 2007; Oda et al., 2014) aims to trans-
late speech into the corresponding text in another
language while reading the source speech. Prior
works mainly focus on the cascaded solution, i.e.,
first recognize the speech with a streaming ASR
model and then translate into the target language
with simultaneous NMT (Ma et al., 2019) model.
Such cascaded systems can leverage off-the-shelf
ASR and NMT systems, which have large-scale
data for training.

Recently, end-to-end simultaneous ST models
are also proposed (Ren et al., 2020; Zeng et al.,
2021) and have shown promising improvements to-
wards cascaded models when experimented on the
same amount of data, especially in low latency re-
quirement. End-to-end models are believed to have
the advantages of lower latency, smaller model size

and less error propagation (Weiss et al., 2017), but
suffer from data scarcity. A well-trained end-to-
end model typically needs a large amount of train-
ing data. To alleviate the data scarcity problem,
pretraining (Xu et al., 2021; Li et al., 2021) and
data augmentation (Bahar et al., 2019; Jia et al.,
2019) are two main techniques. We examine the
effectiveness of the two techniques for improving
end-to-end models in this work.

Specifically, our end-to-end ST model follows
RealTranS (Zeng et al., 2021), an encoder-decoder
model and the encoder is decoupled into acous-
tic encoder and semantic encoder. The acoustic
encoder is used to extract acoustic features which
has a similar function as the ASR encoder. There-
fore we initialize it with a pretrained ASR encoder.
The semantic encoder is required to learn seman-
tic knowledge, which benefits the translation task,
so we initialize it with a pretrained NMT encoder.
The decoder is also initialized with a pretrained
NMT decoder to produce target text decoding. For
data augmentation, we construct pseudo ST corpus
based on ASR data and the pretrained NMT model.
The ground-truth transcription is translated into
target language texts, and so speech-transcription-
translation triplets for ST training are built. This is
also known as sequence-level knowledge distilla-
tion (Kim and Rush, 2016). Generally, the NMT
data can also be augmented with a TTS model to
generate pseudo speech. However, the data quality
highly depends on the TTS performance and it is
hard for TTS to produce voices similar to those in
real scenarios. Thus we do not utilize this method
and leave it to the future work. Another popular
technique for audio data augmentation is SpecAug-
ment (Park et al., 2019; Bahar et al., 2019), which
randomly masks a block of consecutive time steps
and/or mel frequency channels of the input speech
features during training. It is a simple and low-
implementation cost method and has been shown
effective in avoiding overfitting and improving ro-
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Figure 1: Our RealTranS model with pretraining.

bustness. We apply it to all audio-related model
training.

The training procedure for our ST model mainly
contains three steps: ASR and NMT pretraining,
large-scale training on the constructed pseudo data,
and finetuning on the in-domain data. During train-
ing, we remove all the punctuation in source text
in audio-related training (i.e., excluding NMT pre-
training) to relieve the learning burden and improve
recognition quality. To enhance the final perfor-
mance after finetuning, we also utilize token-level
knowledge distillation from the full-sentence NMT
model and multi-domain finetuning trick.

Our model is used to participate in the audio
input track of the AutoSimTrans 2022 Chinese-
English translation task. In this track, an in-domain
ST data called BSTC (Zhang et al., 2021) (contains
about 70 hours of audios) is provided, which is
very limited. Therefore, assisted with extra ASR
and NMT data, we use the aforementioned tech-
niques to achieve remarkable improvement at all
latency requirement, which results in winning the
first place of the track. We also conduct more ex-
periments to examine the effectiveness of our used
techniques. The experiments show that all of our
used methods contribute to the improvement of the
final model.

2 Model Description

We build our model based on RealTranS (Zeng
et al., 2021), an end-to-end simultaneous speech
translation model with its encoder decoupled into
acoustic encoder and semantic encoder (see Fig-
ure 1). With a CTC module guiding the acoustic
encoder to produce acoustic-level features, the de-
coupling relieves the burden of the ST encoder and
makes the two separate modules focus on different
knowledge, which benefits the model training.

RealTranS leverages the unidirectional Conv-
Transformer (Huang et al., 2020) as the acoustic
encoder for gradual downsampling, and weighted-
shrinking for bridging the modality gap between
speech and text. With weighted-shrinking, long
speech features are shrunk to similar lengths as
their corresponding transcription, which makes the

input of the semantic encoder more similar to the
input of NMT encoder. In this way, the diffi-
culty of knowledge transferring when we initialize
the semantic encoder with NMT encoder becomes
smaller. Apart from the semantic encoder, we also
initialize the acoustic encoder with pretrained ASR
encoder, and the decoder with pretrained NMT de-
coder, which has been shown very useful in boost-
ing the performance (Xu et al., 2021).

For simultaneous policy, we use the wait-k-
stride-n policy (Zeng et al., 2021), which has
shown promising improvement over the conven-
tional wait-k policy (Ma et al., 2019).

3 Training Procedure

Our model training consists of three steps: ASR
and NMT pretraining, large-scale training on the
constructed pseudo data, and finetuning on the in-
domain data. Each step may contain different tech-
niques to enhance model performance and we will
describe them in-detailed as follows.

3.1 Pretraining

We first describe how we pretrain our ASR and
NMT models.

ASR Pretraining. Our ASR model follows the
architecture of Conv-Transformer Transducer pro-
posed by Huang et al. (2020). A Transducer model
contains an audio encoder, a prediction net and a
joint net, where the audio encoder is used for ini-
tializing the acoustic encoder of our ST model and
the rest discarded. For each frame in input speech
features, the model first predicts either a token la-
bel from the vocabulary or a special blank symbol.
When a label is predicted, the model continues to
predict the next output; when the model predicts a
blank symbol, it proceeds to the next frame indi-
cating no more labels can be predicted with current
frames. Therefore, for each input speech x, the
model will give Tx+Tz predictions, where Tx (the
length of x) is the number of blank symbols and
Tz is the number of token labels representing the
output transcription z. A Transducer model com-
putes the following marginalized distribution and
maximizes it during training:

p(z|x) =
∑

ẑ∈A(x,z)

Tx+Tz∏

i=1

p(ẑi|x1, ..., xti , z0, ..., zui−1)

(1)

where A(x, z) is the set containing all valid align-
ment paths such that removing the blank symbols
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in ẑ yields z. The summation of probabilities of
all alignment paths is computed efficiently with
forward-backward algorithm.

As there is no ASR data provided, we collect
large-scale ASR datasets from both publicly avail-
able websites and our internal system (the statistics
of the datasets are in Table 1) for training. Dur-
ing training, we also add additive Gaussian noise
and apply speed perturbation (Ko et al., 2015) and
SpecAugment (Park et al., 2019) for data augmen-
tation and model robustness.

Finally, our pretrained ASR model gets the per-
formance of 11.35% WER (Word Error Rate) in
BSTC development set.

NMT Pretraining. We pretrain our NMT model
with CeMAT (Li et al., 2022), a sequence-to-
sequence pretraining model but with a bidirectional
decoder, which has been shown to be effective in
NMT tasks. CeMAT can be pretrained on large-
scale bilingual and monolingual corpus. As no
additional text data are available, we only use the
dynamic dual-masking algorithm to improve per-
formance. Given an input source sentence z, we
first sample a masking ratio µ from a uniform dis-
tribution between [0.1, 0.2], then randomly mask a
subset of source words according to µ. For the cor-
responding target sentence y, we also use a uniform
distribution between [0.2, 0.5] to sample a masking
ratio υ. Following CeMAT, we set υ ≥ µ to force
the bidirectional decoder to obtain more informa-
tion from the encoder. For monolingual, we create
pseudo bilignual text by copying the sentence, then
sample υ = µ from a uniform distribution between
[0.3, 0.4] and mask the same subset on both sides.
After dual-masking, we get the new sentence pair
(ẑ, ŷ), which will be used for jointly training the
encoder and decoder by predicting masked tokens
on both sides. The final training objective is for-
mulated as follows:

L = −
∑

(ẑ,ŷ)

λ
∑

yj∈ymask

logP (yj |ẑ, ŷ)

+(1− λ)
∑

zi∈zmask

logP (zi|ẑ)
(2)

where ymask are the set of masked target words,
zmask are the set of masked source words, and λ is
a hyper-parameter to balance the influence of both
sides. Following CeMAT, we set λ = 0.7.

Our NMT pretraining procedure can be summa-
rized as three sub-steps. We first train a basic NMT
model using the provided general-domain bilingual

data (see Table 1), and generate pseudo target sen-
tences based on the source text from the ASR data
used in ASR pretraining. To improve the quality
of the pseudo corpus, we use HintedBT (Ramnath
et al., 2021) to score each generated sentences.
Next, we combine the bilingual data, the pseudo
corpus and the monolingual text (from the used
ASR data) to pretrain CeMAT. Finally, we finetune
it on the bilingual and pseudo corpus including the
in-domain data (i.e. text part in BSTC dataset) to
produce our final NMT model.

The encoder and decoder of the NMT model is
used to initialize the semantic encoder and decoder
of our ST model, respectively. It is also used to
generate pseudo ST data in next subsection.

Our NMT model achieves BLEU score of 21.82
in BSTC development set, and also won the second
place in the streaming transcription input track of
the Chinese-English translation task.

3.2 Training on Pseudo Data (Distillation)

As the provided ST data is limited (about 70 hours
annotated data), it is difficult to directly train an
end-to-end model only with the provided data. We
decide to construct pseudo data from our used ASR
data – we translate the Chinese transcription into
English translation with our pretrained NMT model
so that we get a large-scale pseudo ST corpus with
audio-transcription-translation triplets. In this way,
we can leverage large-scale unannotated audios
and distill knowledge from the NMT model. We
remove all the punctuation in transcription (as the
ASR data comes from different domains, some of
them contain punctuation but some not) to make it
consistent during training.

We first train our model (initialized with the pre-
trained modules described in Section 3.1) on the
pseudo data with multi-path wait-k training (El-
bayad et al., 2020) to cover all possible k values.
Specifically, k value will be uniformly sampled
from K = [1, ..., |K|] for each training sample
during training while we keep the n value in wait-
k-stride-n policy at 2. In this way, the model can
learn knowledge for different latency requirements.
The training objectives follows RealTranS and con-
tain the CTC loss (LCTC) (Graves et al., 2006) with
a blank penalty (LBP ) (Zeng et al., 2021). We omit
their equations here and refer the readers to Zeng
et al. (2021) for details. The translation loss are
defined as follows:
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LST = −
∑

(x,y)∈D,k∼U(K)

Ty∏

t=1

p(yt|y<t, x
′
≤gk,n(t)) (3)

where x and y are the input speech features and the
output token sequence, and D is the training cor-
pus. y<t denotes the target tokens before time step
t and x′≤gk,n(t)

represents the first gk,n(t) source
features after weighted-shrinking (generally, one
shrunk feature may represent one source token as
they are shrunk based on CTC output probability)
with gk,n(t) = n⌊(t− 1)/n⌋+ k. Finally, the total
training objective is:

LPT = LST + αLCTC + βLBP (4)

where α and β are the hyper-parameters to balance
the losses, which are set to α = 1.0 and β = 0.5.
During training, we also apply SpecAugment.

3.3 Finetuning on In-Domain Data
After the large-scale training on pseudo data, we
use the in-domain data (i.e., the provided 70 hours
BSTC data) for finetuning. To be consistent with
the training in the previous step, we also remove
all punctuation in the source texts for CTC loss.
During finetuning, there are mainly two aspects
that are different from the large-scale training in
the previous step. First, we fix the k value rather
than use the multi-path wait-k training and train
several models with different k as the in-domain
data is very small. Second, we add a token-level
knowledge distillation (KD) loss guided by the full-
sentence NMT model pretrained in Section 3.1.
Note that the input for the NMT model are the
source texts with punctuation preserved. In this
way, the final ST model can also learn from text
translation. The KD loss is defined as follows:

LKD = −
∑

(x,z,y)∈DST

Ty∑

t=1

|V |∑

k=1

q(yt = vk|y<t,z)

× log p(yt = vk|y<t, x
′
≤gk,n(t))

(5)

where x, z and y are the input speech features, the
input source texts and the output token sequence,
and DST is the in-domain training corpus. There-
fore, the total finetuning objective is:

LFT = (1− γ)LST + γLKD + αLCTC + βLBP (6)

where γ controls the tradeoff between the ST and
KD losses and is set to 0.2. We set α = 1.0 and
β = 0.5.

Dataset SRC Speech SRC Text TGT Text #Hours #Sents

CWMT21 × ✓ ✓ – 9M
Internal ✓ ✓ Pseudo 10K 11M
WenetSpeech ✓ ✓ Pseudo 10K 14M
BSTC ✓ ✓ ✓ 70 38K

Table 1: The statistics of the used datasets.

Note that in our experiments, we utilize multi-
domain finetuning rather than finetuning only with
the in-domain data, i.e., we also randomly sam-
ple similar number of training samples from the
constructed pseudo data for finetuning. This im-
proves domain generalizabiliy of our model. More
analysis can be found in Section 4.3.

4 Experiments

4.1 Experimental Setup

Datasets. We introduce the details of the datasets
we use here. Table 1 displays the statistics of them.
CWMT211 is the NMT data in general domain
provided by the organizer. We mainly use it to pre-
train our NMT model. Internal and WenetSpeech
are large-scale ASR datasets, both of which con-
tain about 10K hours of audios. WenetSpeech is
mainly collected from YouTube and Podcast and
is publicly available2, while Internal comes from
our internal system, containing conversations or
readings from multiple domains. The transcription
in them are translated into target texts with our pre-
trained NMT model, which results in large-scale
pseudo ST data. Finally, BSTC is the in-domain
ST data provided by the organizer. It is used to
finetune our NMT model (with source texts and
target texts) and the final ST model.

The punctuation in source texts is processed with
different ways according to different training pro-
cedure (see Section 3 for details), while that in
target texts is always preserved. We also filter the
data based on the lengths of source and target texts.
We follow Zhang and Feng (2021) and use char-
level tokenization on the Chinese sentences, while
we apply sentencepiece3 (Kudo and Richardson,
2018) to generate subword vocabulary for English.

System Setting. We use 128-dimensional log-
mel filterbank as acoustic features, calculated with
20 ms window and 10 ms stride and normalized by

1http://mteval.cipsc.org.cn:81/
agreement/AutoSimTrans

2https://wenet.org.cn/WenetSpeech/
3https://github.com/google/

sentencepiece
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Global CMVN (cepstral mean and variance nor-
malization). Our acoustic encoder contains two
blocks of Conv-Transformer (Huang et al., 2020).
In the first block, we have two 2-D convolution
layers with stride 2 and four layers of transformer
encoder; while in the second block, we have three
1-D convolution layers with one of them is stride
2 (others 1) and 16 layers of transformer encoder.
This results in total 8× downsampling and intro-
duces a 100ms look-ahead window. In the first
block, transformer layers are with 384 dimension
and 6 attention heads, while in the second block
they are with 512 dimension and 8 attention heads.
For the semantic encoder and decoder, as they are
initialized with the NMT model, they follow the
deep encoder, shallow decoder architecture to im-
prove inference efficiency, with 12 encoder layers,
3 decoder layers, 12 attention heads and 768 hidden
size.

Our model is trained with 24 NVIDIA Tesla
V100 GPUs, each with a max-tokens of 2048 (i.e.,
maximum of 2048 text tokens in one batch). We
use Adam optimizer (Kingma and Ba, 2015) during
model training with 2e−3 learning rate and 10000
warm-up steps, followed by the inverse square root
scheduler. Dropout rate is set to 0.1. For SpecAug-
ment, we set the parameter for time masking T to
40 and that for frequency masking F to 4. The
number of time and frequency masks applied mT

and mF are 2 and 1, respectively.

Evaluation Metrics. For evaluation, we use
case-sensitive detokenized SacreBLEU4 for trans-
lation quality evaluation. For latency, we adapt
Average Lagging (AL) (Ma et al., 2019) to ST set-
tings, following previous studies (Ma et al., 2020;
Zeng et al., 2021). In the submission system, the la-
tency is evaluated with Consecutive Wait (CW) (Gu
et al., 2017).

AL in ST evaluates the degree of that the user
is out of sync with the speaker, in terms of source
speech time duration (Zeng et al., 2021), which is
defined as follows:

AL(x,y) =
1

τ(|x|)

τ(|x|)∑

i=1

[d(yi)− |x|
|y∗|Ts(i− 1)] (7)

where τ(|x|) denotes the target token index when
the model has read the entire source speech. |y∗|
is the length of the reference translation, and Ts

represents that the speech features are extracted

4https://github.com/mjpost/sacreBLEU

Figure 2: Comparison results of our model variants.

every Ts ms, which will be 80ms in our model.
As our acoustic encoder introduces a 100ms look-
ahead window, we add 100 to the final AL scores.

CW is the number of source tokens waited be-
tween two target tokens, which can be calculated
with the following equation (Ma et al., 2019):

CW (x,y) =
|x|∑|y|

i=1 1CWg(t)>0

(8)

where x here is the corresponding transcription of
source speech, and CWg(t) denotes the waiting
source token numbers between time step t− 1 and
t. This means that when evaluated with CW, our
model also needs to output transcription. We de-
cide to output the results of CTC greedy paths. In
this way, CW can be easily calculated as our wait-
k-stride-n policy is applied on the shrunk speech
features which are also based on the CTC module.

4.2 Main Results
Figure 2 displays the comparison results among
different variants of our model. We compare the
following settings:
(a) No PT & No Pseudo: We do not use any pre-
trained modules and directly train the model on the
provided in-domain data.
(b) PT & No Pseudo: We initialize the model with
the pretrained modules and directly train the model
on the provided in-domain data.
(c) PT & With Pseudo: We initialize the model with
the pretrained modules and train the model on the
large-scale constructed pseudo data.
(d) PT & With Pseudo + FT: We further finetune
the model on the in-domain data with multi-domain
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Model CTC Loss (↓) BLEU (↑)
With Punct RM Punct With Punct RM Punct

No PT & No Pseudo 4.88 4.60 4.12 4.03
FT based on PT + Pseudo 2.10 1.73 11.81 12.41

Table 2: CTC Loss and BLEU results of models trained
on in-domain BSTC data, with punctuation preserved
or removed. We set the same k ensuring similar latency.

finetuning based on model c.
All of the model variants use wait-k-stride-n si-

multaneous policy with n=2 and k=2, 4, 6, 8, 10,
12, respectively.

We also compare with the performance of our
cascaded model, which first passes the audio input
into our pretrained ASR model and then translates
with our pretrained NMT model. Since the NMT
model is an offline full-sentence translation model,
the latency is much higher than the other variants
(about 5000ms AL). Therefore, we also compute
the offline translation result of our model d for fair
comparison.

As can be seen, without any pretraining and extra
data, the model performs poorly (model a). With
pretraining (model b) and large-scale pseudo data
(model c), the model performance increases signif-
icantly, which validates the effectiveness of the two
training tricks Further finetuning with in-domain
data (model d) also introduces reasonable improve-
ment, which shows the importance of domain adap-
tation. Compared to the cascaded result, our model
achieves almost 1 BLEU better than it, indicating
the superiority of our RealTranS end-to-end model.

4.3 Further Analysis
Effects of Punctuation Removal. We mainly
examine the effects of punctuation removal (only
for transcription) during training on the in-domain
data. We experiment with two settings. The first
one is to directly train on the in-domain data with-
out any pretraining or pseudo data, and the second
one is finetuning based on the model with pretrain-
ing and pseudo data. We display the results of them
with and without punctuation in Table 2.

Both models achieve lower CTC loss values with
punctuation removal. It validates that the model
can learn better on the acoustic information when
punctuation is removed. However, no significant
difference is observed in BLEU for the first model
while the BLEU is degraded when finetuning the
pretrained model with punctuation preserved. It is
mainly because the model is first pretrained on the
data without punctuation and can be trained more
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Figure 3: Results of our model when using different
amount of pseudo data.

λ value 0.0 0.2 0.4 0.6 0.8 1.0

BLEU 13.07 13.79 13.70 13.39 12.53 11.06

Table 3: BLEU scores of models trained with different
λ values in Eq. 6. We set the same k ensuring similar
latency.

smoothly without punctuation when finetuning.

Effects of Pseudo Data Amount. We also want
to examine the effects of pseudo data amount dur-
ing training. We sample 10%, 20% and 50% of our
constructed pseudo data and then use them to train
our model, respectively. Figure 3 shows the results
(before finetuning), together with our model with
full data (100%). Comparing models trained with
10% and 20%, it introduces sufficient improvement
when doubling the pseudo data. However, when
the pseudo data continues to increase, the perfor-
mance gain becomes smaller, especially for the re-
sults in low latency. It is probably because that our
NMT model used for generating pseudo transla-
tions is trained with limited NMT data (around 9M
sentences), much smaller than the used ASR data
(around 25M, according to Table 1). The amount
of knowledge it carries is not enough to provide
such larger amount of efficient pseudo data. There-
fore, we might need large amount of data for both
recognition and translation to train a more powerful
end-to-end ST model.

Effects of Token-level Knowledge Distillation.
Our token-level knowledge distillation (KD) from
full-sentence NMT model can guide the learning
of ST model to forecast target text when the source
speech is incomplete during finetuning. We exam-
ine the effects of the balance value λ in Eq. 6. The
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Figure 4: Results with different finetuning methods.

results are displayed in Table 3. λ = 0.0 indicates
that no KD is used, and λ = 1.0 means the model
is trained only based on KD but no cross-entropy
loss. It can be found that too much guidance from
the KD might hurt the performance. We attribute
this to two reasons. First, the NMT model is mainly
trained with CWMT21 data, which is limited and
in a different domain. Second, our model has al-
ready been trained with the constructed pseudo
data, which can be viewed as another kind of KD
(sequence-level KD). Therefore, we choose to se-
lect smaller λ (i.e., 0.2) in our experiments.

Effects of Multi-Domain Finetuning. Figure 4
shows the results of our model without finetuning
(No FT), only finetuned with in-domain data (FT
only In-Domain) and finetuned with multi-domain
corpus (FT with Multi-Domain) in the develop-
ment set and test set, respectively5. We can find
that though finetuning only with the in-domain data
improves a lot in the development set (in average
nearly 2 BLEU gain at each latency requirement),
the improvement in the test set is limited and per-
formance even hurts at one latency setting (No PT
v.s. FT only In-Domain). We attribute this to the

5Note that the test results are validation experiments after-
wards and not our submission results.

fact that the test set may be not exactly in the same
domain as the training and development data, and
the naive finetuning degrades the ability of domain
generalizability. Therefore, we decide to use multi-
domain finetuning rather than finetuning only with
the in-domain data. As can be seen in Figure 4, this
brings no improvement in the development set (FT
with Multi-Domain v.s. FT only In-Domain), but
improves in the test set.

5 Conclusion

In this work, we describe the details of our submit-
ted system to AutoSimTranS 2022, which won the
first place in Chinese-English audio input track.
Our model is based on the end-to-end simulta-
neous speech translation model RealTranS and
follows three-step training procedure, including
ASR and NMT pretraining, large-scale training on
the pseudo data and finetuning on the in-domain
data. Our experiments proves the superiority of
our model and training procedure and also exam-
ines the effectiveness of different techniques like
punctuation removal and multi-domain finetuning.
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Abstract

This system paper describes the BIT-
Xiaomi simultaneous translation system
for Autosimtrans 2022 simultaneous trans-
lation challenge. We participated in three
tracks: the Zh-En text-to-text track, the
Zh-En audio-to-text track, and the En-Es
test-to-text track. In our system, wait-k is
utilized to train prefix-to-prefix translation
models. We integrate streaming chunking
to detect segmentation boundaries as the
source streaming reading in. We further
improve our system with data selection,
data augmentation, and R-Drop training
methods. Results show that our wait-k im-
plementation outperforms the organizer’s
baseline by at most 8 BLEU score and our
proposed streaming chunking method fur-
ther improves by about 2 BLEU score in
the low latency regime.

1 Introduction

Simultaneous translation (Cho and Esipova,
2016; Yarmohammadi et al., 2013; Ma et al.,
2019), is a task in Machine Translation (MT),
which intends to provide low latency transla-
tion in real-time scenarios. To achieve low la-
tency translation, the translation system needs
to begin translating before the end of source
sentences, which can be viewed as prefix-to-
prefix translation (Ma et al., 2019). Simulta-
neous translation is widely used in real-time
translation scenarios such as simultaneous in-
terpretation, online subtitles, and live broad-
casting. In these scenarios, low latency may
have equal or even higher priority than trans-
lation quality.

In simultaneous translation, the most chal-
lenge is the balance of translation quality and

∗The work was done during the author’s internship
at Xiaomi.

† Corresponding author.

latency. Low latency translation requires be-
ginning translation with insufficient source in-
formation, which may cause incorrect trans-
lation results. How to find a simultaneous
policy to balance quality and latency is the
most challenging question. On another hand,
in most cases, the standard machine transla-
tion model is trained on full sentences, which
can achieve good performance in full-sentence
evaluation. But for prefix-to-prefix inference,
which is crucial for simultaneous translation,
the standard machine translation model al-
ways perform poorly.

Previous methods for simultaneous transla-
tion can be classified as the fixed policy and
the adaptive policy according to different si-
multaneous policies. Fixed policy uses fixed-
latency simultaneous strategy, for example,
set value K, and forces the translation to lag
behind source for K tokens (Ma et al., 2019).
The adaptive policy needs an agent module
to perform adaptive simultaneous translation.
The agent will consider the current translation
state, including the source prefix and the hy-
pothesis prefix, to decide whether to output
new tokens at the current state (Gu et al.,
2017; Arivazhagan et al., 2019; Ma et al.,
2020). Chunk-base (Xiong et al., 2019; Zhang
et al., 2020) simultaneous translation is a spe-
cial adaptive policy, which makes a decision
only based on the source prefix.

In our system, we propose a streaming
chunking method that can be combined with
a fixed wait-k policy. The streaming chunk-
ing method can significantly improve trans-
lation quality with little latency increase in
low latency regions. We train a segmenta-
tion model to detect boundaries in streaming
sources and employ a wait-k policy to decide
output token numbers. We pre-train trans-
former models with multi-path wait-k on a
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Track Corpus #Sentence Pairs

Zh-En BSTC
CWMT

38K
9M

En-Es UN Parallel 22M

Zh ASR BSTC
AIshell

68h
150h

Table 1: Data statistics. Parallel corpus is counted
by sentence pairs. ASR corpus is counted by audio
time (hour).

large general corpus and fine-tune with single
k on a small domain corpus. We augment the
general corpus and domain corpus with Back-
Translation (BT) and Front-Translation (FT),
and further augment the domain corpus with
character-level pseudo ASR error. In train-
ing we incorporate R-Drop (liang et al., 2021)
method to improve translation quality. In
text-to-text tracks, we use text streaming in-
put provided by the organizer. In the audio-to-
text track, we train our ASR system to tran-
script audio into the streaming text as trans-
lation input.

The remainder of this paper is organized as
follows. We describe the techniques employed
in our system and the methods we propose in
Section 2. In Section 3 we show our experi-
ment settings and results, including data and
model. Finally, we conclude this paper.

2 Methods
In this section, we describe the data, the uti-
lized prefix-to-prefix translation model, and
the proposed streaming chunking method.

2.1 Data
We describe the data used in our system
from the following aspects: statistics, pre-
processing, filtering and data-augmentation.

All allowed bilingual training sets are em-
ployed, including the BSTC (Zhang et al.,
2021) and the CWMT21 for the Zh-En track,
the UN Parallel Corpus for the En-Es track.
For the ASR model in the Zh-En audio-
to-text track, we use the BSTC and the
AIshell (Hui Bu, 2017) corpus for training.
Data statistics are shown in Table 1.
Pre-processing. Sacremoses1 is conducted
to normalize and tokenize English and Span-

1https://github.com/alvations/sacremoses

ish sentences. Jieba2 is used to segment Chi-
nese sentences. And redundant spaces in the
text are removed. After tokenization, we ap-
ply Subword-nmt3 to learn byte-pair encoding
with 32K operations.
Data filtering. The noises in the original
data may bring a negative impact on trans-
lation quality, so we filter the training set as
following steps:

• First, the parallel corpus is filtered by
hand-crafted rules. Sentences that con-
tain less than 30% linguistic words will
be viewed as noise sentences. When any
sentence in a sentence pair is judged as
noise, this pair is discarded. For Chinese
sentences, we consider Chinese characters
as linguistic words. For En or Es, we con-
sider words only containing alphabet char-
acters as linguistic words.

• Second, we utilize fast_align4 to filter
out poorly aligned sentence pairs. We
calculate align scores for each sentence
pair and filter out sentence pairs with low
scores. Align score threshold is set as −7.

• Third, language identification is applied
with langid5. Sentences in the wrong lan-
guages are viewed as low-quality samples
and removed.

• Finally, we discard duplicate pairs and re-
move the pair with a length ratio greater
than 3.0 or the sentence with a length
more than 200.

Data selection Because the bilingual corpus
utilized in training is not all from the speech
domain, we use a language-model-based data
selection method select domain data, which
is similar to methods proposed by Moore and
Lewis (2010). We train two 5-gram language
model on source sentences with KenLM6, one on
the BSTC corpus (denoted as lmin), another
on the CWMT corpus (denoted as lmout).
Than for each sentence in the CWMT cor-
pus, we compute the perplexity distances with
two language model, which denoted as domain

2https://github.com/fxsjy/jieba
3https://github.com/rsennrich/subword-nmt
4https://github.com/clab/fast_align
5https://github.com/saffsd/langid.py
6https://github.com/kpu/kenlm
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score for the sentence ppl_score = −(pplin −
pplout). We sort the corpus by domain score
and remove the pair with a large domain dis-
tance.
Data augmentation As the training corpus
is limited, we utilize back-translation (BT)
and front-translation (FT) to augment the
training corpus. We first train two translation
models in two directions: Zh-En and En-Zh,
then generate pseudo training corpus in two
directions.

2.2 R-Drop
R-Drop7 is a method to improve translation
quality in machine translation, which can
be easily incorporated with our translation
model. All models in our system are trained
with the R-Drop algorithm proposed by liang
et al. (2021).

2.3 Wait-k
Wait-k is a simple and effective method for
fixed-policy simultaneous translation, which
can train prefix-to-prefix translation ability for
transformer models. We build our system
based on fairseq, which provides a wait-k
baseline similar to efficient wait-k (Elbayad
et al., 2020). Two-stage training is employed
to achieve better performance in the speech
domain. Model is firstly trained on large scale
parallel corpus with multi-path wait-k, which
randomly selects a value of k within the inter-
val (for example, [k, k+n]) for each training
batch (denoted as wait(k)-(k+n)). Secondly,
we fine-tune the model with a small speech do-
main parallel corpus with simple wait-k (de-
noted as wait(k)) or multi-path wait-k.

2.4 Streaming Chunking
In a streaming translation system, the source
is received token by token. The wait-k pol-
icy will try to translate each time source is
ahead of target for k tokens, which may bring
some mistakes when the source stops at a par-
tial phrase. Especially for Chinese streaming
input, in which source streaming is growing
by character. So some source prefixes may
contain incomplete word pieces which may
cause misunderstanding and incorrect transla-
tion. A stream case with error source prefixes

7https://github.com/dropreg/R-Drop

is shown in Table 2. We propose a streaming
chunking method, which employs a streaming
segmentation model to detect word boundaries
on-the-fly in streaming input.

2.4.1 Streaming Segmentation Model
We build our streaming segmentation model
base on chinese-roberta-wwm-ext8 pro-
posed by Cui et al. (2021). Compared with a
vanilla Chinese word segmentation model, the
streaming segmentation model does not need
to obtain the complete sentence and can seg-
ment words without introducing an additional
delay. We treat the streaming word segmenta-
tion task as a sequence classification task and
use the final hidden state of the classification
token ([CLS]) to perform binary classification
through a 3-layer fully connected network to
determine whether the current source sentence
prefix end with complete words. We construct
training data using transcribed sentences from
the BSTC training set. The complete sen-
tences in the training data are segmented us-
ing pkuseg (Luo et al., 2019). The source sen-
tence prefixes ending with word boundaries are
considered positive examples, while the rest of
the source sentence prefixes are negative exam-
ples.

2.4.2 Combine with wait-k
We utilize the streaming segmentation model
to detect word boundaries and only enable
the wait-k policy at the word boundaries to
determine word numbers that need to trans-
late. Then the prefix-to-prefix translation is
performed, which can avoid translating on
source prefix containing incomplete words. Al-
gorithm 1 gives the pseudo code of our pro-
posed method. And Figure 1 shows how the
streaming segmentation model works with the
wait-k inference.

2.5 Evaluation
We evaluate our simultaneous translation
model in two aspects. First is translation qual-
ity, we compute BLEU (Papineni et al., 2002)
score with merged document translation re-
sults. Second, for latency, we utilize Average
Lagging (AL) (Ma et al., 2019) to represent
the text lagging of our model compared to

8https://huggingface.co/hfl/chinese-roberta-wwm-
ext
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stream-id char-stream word-stream
1 那 那
2 那首 那
3 那首先 那首先
4 那首先呢 那首先呢
5 那首先呢我 那首先呢我
6 那首先呢我先 那首先呢我先
7 那首先呢我先介 那首先呢我先
8 那首先呢我先介绍 那首先呢我先介绍
9 那首先呢我先介绍一 那首先呢我先介绍
10 那首先呢我先介绍一下 那首先呢我先介绍一下
11 那首先呢我先介绍一下我 那首先呢我先介绍一下我
12 那首先呢我先介绍一下我自 那首先呢我先介绍一下我
13 那首先呢我先介绍一下我自己 那首先呢我先介绍一下我自己

full sentence
nà | shǒu xiān | nē | wǒ | xiān | jiè shào | yí xià | wǒ zì jǐ
那 | 首先 | 呢 | 我 | 先 | 介绍 | 一下 | 我自己
then | first | - | I | - | introduce | - | myself

Table 2: Case analysis of incomplete streaming in a Chinese sentence. Char-stream presents sentences by
characters. Word-stream presents sentence by word. The prefixes in red color mean error in char-stream,
which contains incomplete word-piece. The partial word piece may cause misunderstanding and incorrect
translation.

yuǎn
远

yǒng
永

xiāng
相

xìn
信

měi
美

hǎo
好

de
的

shì
事

qíng
情

Always

jí
即

jiāng
将

shēng
生

fā
发

believe comingthat beautiful things are

永远相信美好的事情即将发生
Yǒngyuǎn xiāngxìn měihǎo de shìqíng jíjiāng fāshēng
Always believe that beautiful things are coming

Streaming Segmentation Model

Source:

Target:

Figure 1: This example shows how the streaming segmentation model works with a wait-k model. The
solid lines are the translation points of our proposed method, and the dashed lines are the additional
possible translation points of the wait-k model.
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Algorithm 1: Wait-k decoding with
the streaming chunking method
Input: the translation model Mt, the

chunking model Mc, the source
sequence x, wait-k lagging K

Output: The translated sentence ŷ

1 Initialization: the read token sequence
x̂ = [], the output sentence ŷ = [],the
incomplete word read xp =

′′

2 while |ŷ| ̸= ’</s>’ do
3 if |x̂| − |ŷ| ≥ K then
4 tokennext = Mt(x̂, ŷ)
5 y = y + tokennext

6 else
7 xp = xp + x.next_char()

// xp is a complete word
8 if Mc(x̂, xp) then
9 = + xp

10 xp = ′′

11 end
12 end

13 end
14 return

ideal simultaneous interpretation, which is cal-
culated in the following equation:

AL =
1

τ

τ∑

j=1

g(j)− j − 1

γ

where τ = arg min
t

[ g(j) = |X| ]
γ = |Y |/|X|

(1)

3 Experiments and Results
In this section, we describe our experiment set-
tings and results on all the three tracks we par-
ticipate in.

3.1 Zh-En text-to-text track
For the Zh-En text-to-text track, we introduce
our experiments in detail, including model
configurations, data, as well as results of a
strong wait-k baseline and streaming chunking
method.

3.1.1 Model Configurations
In our experiment, we train transformer-big
models with the same parameters in Vaswani
et al. (2017). The token-level batch size is
about 100k on 8 GPUs for pre-training in all

experiments. The learning rate is set as 5e-4
for pre-training and 5e-6 for fine-tuning, con-
trolled by Adam optimizer (Kingma and Ba,
2015). We pre-train the model for 100000
steps and save the model every 2000 steps. We
fine-tune the model for 10000 steps and save
every 200 steps (batch size is about 30k).

3.1.2 Data
We filter the BSTC corpus and the CWMT cor-
pus with methods described in Section 2.1 and
apply language-model-based data selection to
the CWMT corpus. For the first edition stan-
dard transformer model, we mix the BSTC cor-
pus and the CWMT corpus for pre-training,
using the BSTC corpus for fine-tuning (de-
noted as M1). And following is the detail of
the M1 model.

For the pre-training stage, we show our re-
sults in each filtering step in Table 3. We
directly mix the CWMT and the BSTC par-
allel data as the D0 corpus. The rules-filter
discards noise data containing few linguistic
words, which improves about 1.3 BLEU. In
align-langid-filter, we drop sentence pairs with
a align score less than −7 and sentences in the
wrong languages. In PPL-selection, we use
ppl_score computed by the language model
to sort sentence pairs and drop sentence pairs
with a ppl_score larger than 8000. With align-
langid-filter and PPL-selection, 1.5M sentence
pairs are dropped and nearly no BLEU de-
scend is observed. We get the D1 corpus af-
ter all the filtering and selection. Further, we
up-sample the BSTC corpus 5 times to enlarge
the proportion of domain data. The R-Drop
method is incorporated and we choose a larger
dropout value (default dropout 0.1). Results
in 4 show that the R-Drop (α = 5) method
significantly improves BLEU, and more in-
crease is observed as we employ these meth-
ods together. For fine-tuning, we filter the
BSTC corpus by hand-crafted rules and train
with the consistent R-Drop method in the pre-
training. Finally, we integrate the pre-training
and the fine-tuning to train the M1 model,
and the performance on the development set
is shown in Table 7.

As the training corpus is limited, we utilize
data augmentation methods. We perform data
augmentation with the M1 model, contain-
ing forward-translation (FT) and backward-
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Pre-training (data) Data statistic dev (SacreBleu)
Orig BSTC+CWMT (D0) 9.1M 16.82
+rules-filter 7.7M 18.09

+align-langid-filter 7.2M 18.04
+PPL-selection (D1) 6.2M 17.99

Table 3: Data filtering and selection in the pre-training stage. BLEU is computed by ScareBleu in sentence-level.
Filtering and selection methods are applied incrementally.

Pre-training (method) Data statistic dev (SacreBleu)
BSTC+CWMT (D1) 6.2M 17.99
+up-sampling 6.34M 18.40
+dropout 0.25 6.2M 18.59
+R-Drop (α = 5) 6.2M 19.72
+up-sampling + dropout 0.25 + R-Drop 6.34M 21.48

Table 4: Data statistic and BLEU on the development of our pre-training methods. BLEU is computed by
ScareBleu in sentence-level.

translation (BT) on the pre-training and the
fine-tuning corpus. For the pre-training cor-
pus, we leverage the M1 model to perform
FT and BT on the D1 corpus, mixed with
D1 corpus as the augmented pre-training cor-
pus. Results in Table 5 show FT has better
performance than BT. For fine-tuning corpus,
we employ the M1 model to translate BSTC
corpus in forward and backward paths and
add all 5 beam results to the fine-tuning cor-
pus. What’s more, to strengthen the robust-
ness of the model, we add char-level augmen-
tation into the fine-tuning corpus, which con-
tains insertion, deletion, duplication, and ho-
mophone substitution. For homophone sub-
stitution, we use python-pinyin9 to extract
homophone dictionary and substitute homo-
phone characters according to character fre-
quency. Results on the fine-tuning corpus are
shown in Table 6, which indicates that each
augmentation method is useful.

Finally, we add FT augmentation in pre-
training, add FT, and BT as well as charac-
ter augmentation in fine-tuning. The model
trained with augmented pre-training and fine-
tuning is denoted as the M2 models. Signifi-
cant improvement of the M2 model against the
M1 model could be observed in Table 7.

3.1.3 Wait-k Baseline
To improve prefix-to-prefix translation qual-
ity, we use wait-k training described in Sec-

9https://github.com/mozillazg/python-pinyin

tion 2.3. Using the same training data of the
M2 model, we pre-train the model with multi-
path wait-k and fine-tune with simple wait-k
or multi-path wait-k. We report the results
of our model on the BSTC development set.
All trained model is listed in Table 8, and
we show the AL-BLEU curve of several mod-
els. We achieve good performance according
to Figure 2, in which our M2_wait1-9_wait5
model exceeds the PaddlePaddle wait-5 model
by at most 8 BLEU. The model trained with
small k may achieve better performance in
the low-latency regime, but not perform well
in the high-latency regime. What’s more,
we ensemble the top-3 model in each infer-
ence k, which shows benefits across all latency
regimes. Same as Guo et al. (2022), standard
beam-search is utilized after the source stream
is finished. Our models achieve almost consis-
tent performance in high latency regime.

Figure 2: Results of M2 wait-k models. Models are
list in Table 8. PaddlePaddle_wait5 is wait-k model
provided by organizer.
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Pre-training (Augmentation) Data statistic (Pre-training) dev (SacreBleu)
M1 (only pre-train) 6.34M 21.48
+FT pre-train 10.95M 22.32
+BT pre-train 11.03M 19.90

Table 5: Results of data augmentation in the pre-training stage. We use the M1 model to generate the FT and
BT augment data and mixed with the D1 corpus for pre-training.

Fine-tuning (Augmentation) Data statistic (Fine-tuning) dev (SacreBleu)
M1 (fine-tuned on BSTC) 36K 22.41
+5FT 197K 22.92
+5BT 211K 22.59
+char-aug 185K 22.80
+5BT +5FT +char-aug 525K 23.05

Table 6: Results of data augmentation in the fine-tuning stage. The M1 model is leveraged to generate FT
and BT augment data, and beam 5 results are saved. For the char-aug, we use character-level augmentations
including insertion, deletion, duplication, and homophone substitution. The models in this table are all based on
the same pre-trained model.

Model dev (SacreBleu) dev (Mteval-v13a)
M1 22.43 27.26
M2 23.62 28.96

Table 7: Results of data augmentation on standard
transformer model. The M1 model is trained with pre-
training and fine-tuning. The M2 model leverage data
augmentation in both the pre-training and the fine-
tuning stage.

Model name Pre-train Fine-tune
M2_wait5-15_wait5 K ∈ [5, 15] K = 5
M2_wait5-15_wait7 K ∈ [5, 15] K = 7
M2_wait5-15_wait9 K ∈ [5, 15] K = 9
M2_wait5-15_wait11 K ∈ [5, 15] K = 11
M2_wait5-15_wait13 K ∈ [5, 15] K = 13
M2_wait5-15_wait15 K ∈ [5, 15] K = 15
M2_wait5-15_wait5-15 K ∈ [5, 15] K ∈ [5, 15]
M2_wait1-9_wait1 K ∈ [1, 9] K = 1
M2_wait1-9_wait3 K ∈ [1, 9] K = 3
M2_wait1-9_wait5 K ∈ [1, 9] K = 5
M2_wait1-9_wait1-9 K ∈ [1, 9] K ∈ [1, 9]

Table 8: Our wait-k models are pre-trained and fine-
tuned on the same data of the M2 model in Section 3.1.
We show the K value settings in pre-training and fine-
tuning wait-k training for all M2 wait-k models. Take
M2_wait5-15_wait5 for example, we use multi-path
wait-k training with K ∈ [5, 15] for pre-training and
use simple wait-k with K = 5 for fine-tuning.

3.1.4 Streaming Chunking
In this section, we add streaming chunking
methods. We first fine-tune our segmentation
model based on chinese-roberta-wwm-ext
on BSTC train set and get 92.0% accuracy and
93.7% F-score on the BSTC development set.
Then we employ our segmentation to perform
online source chunking to detect word bound-
aries. The results in Figure 3 show about 2
BLEU improvements in the low-latency regime
with a little increase in AL.

Figure 3: Results of streaming chunking method.
M2_ensemble_chunk add streaming segmentation
model compare to M2_ensemble.

3.2 En-Es text-to-text track
For En-Es text-to-text track, we use the same
data filtering rules on the UN-parallel cor-
pus. Because of lacking speech corpus, we
didn’t perform data selection and augmenta-
tion. Standard and wait1-11 transformers are
trained and we report our results on the devel-
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opment set in Figure 4.

Figure 4: Results of En-Es text-to-text track. BLEU
is computed in document level with Mteval-v13a.

3.3 Zh-En audio-to-text track
In Zh-En audio-to-text track, we train a sim-
ple transformer ASR model10 with audio from
BSTC and AIshell. The audio wav files are
segmented by Silero-VAD(Team, 2021) and we
achieve 0.38 WER on development and 0.28
WER on the test. And we perform simultane-
ous decoding on the ASR transcriptions with
the same model and settings in the text-to-text
track. Results show on development Figure 5
shows that the translation BLEU dropped by
about 10 BLEU on audio input.

Figure 5: Results of Zh-En audio-to-text track.
BLEU is computed in document level with Mteval-
v13a.

4 Conclusion
We elaborate on the BIT-Xiaomi simultane-
ous translation system in this paper. We in-
vestigate data filtering and augmentation to
enlarge high-quality corpus and utilize the R-
Drop method to improve translation quality.
We train our simultaneous translation models

10https://github.com/facebookresearch/fairseq
/blob/main/examples/speech_to_text/docs/
mustc_example.md

based on the wait-k strategy, and the stream-
ing chunking method is employed to avoid seg-
mentation errors in the source stream. The
results on Zh-En text-to-text track indicate
that the streaming chunking method can be
integrated with the streaming decoding and
improves translation quality. The slightly
worse quality on the audio track suggests that
the ASR error may affect translation quality
much. In the future, we will explore better
streaming ASR models and try more interest-
ing simultaneous policies to get better latency
and quality.
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Abstract

This paper describes our submitted text-to-text
Simultaneous translation (ST) system, which
won the second place in the Chinese→English
streaming translation task of AutoSimTrans
2022. Our baseline system is a BPE-based
Transformer model trained with the PaddlePad-
dle framework. In our experiments, we employ
data synthesis and ensemble approaches to en-
hance the base model. In order to bridge the
gap between general domain and spoken do-
main, we select in-domain data from a general
corpus and mix them with a spoken corpus for
mixed fine-tuning. Finally, we adopt a fixed
wait-k policy to transfer our full-sentence trans-
lation model to simultaneous translation model.
Experiments on the development data show that
our system outperforms the baseline system.

1 Introduction

Simultaneous translation (Gu et al., 2017; Ma et al.,
2018) consists in generating a translation before
the source speaker finishes speaking. It is widely
used in many real-time scenarios such as interna-
tional conferences, business negotiations and legal
proceedings. The challenge of Simultaneous ma-
chine translation is to find a read-write policy that
balances translation quality and latency. The trans-
lation quality will decline if the machine translation
system reads insufficient source information. When
reading wider source text, latency will increase.

Recent read-write policies can be divided into
two categories: fixed policies such as wait-k (Ma
et al., 2018), wait-if* (Cho and Esipova, 2016), and
adaptive policies such as MoChA (Chiu and Raffel,
2017), MILk (Arivazhagan et al., 2019) and MU
(Zhang et al., 2020). Fixed policies are simple to
implement, but they neglect contextual information,
which might result in quality reduction. Dynamic
policies are more flexible, they can learn from data
to achieve better quality/latency trade-offs, but ac-
cordingly difficult to train.

In our system, we train a Transformer (Vaswani
et al., 2017) with a deep encoder (Meng et al.,
2020) as baseline for abtaining rich source rep-
resentations, besides we initialize the model with
the method mentioned in DeepNet (Wang et al.,
2022) in order to stabilize the training of the deeper
model. At the pre-training stage, we firstly pre-
train our model on a large general corpus, then we
utilize data synthesis methods such as self-training
and back-translation to improve model quality.

During the fine-tuning phase, we first apply fine-
tuning on a small spoken corpus. For better do-
main adaptation, we adopt mixed fine-tuning (Chu
et al., 2017), which trains on a mixed dataset that in-
cludes a subsampled general corpus and an upsam-
pled spoken corpus. Thirdly, we propose a method
called "in-domain mixed fine-tuning", which fur-
ther improve the BLEU score than mixed fine-
tuning. Specifically, inspired by in-domain data
filtering (Moore and Lewis, 2010; Ng et al., 2019),
we mixed upsampled spoken data with selected
in-domain data from general corpus rather than
random subsampled.

In the final stage, we employ the wait-k policy
to convert the full-sentence translation model into
a prefix-to-prefix architecture that predicts target
words with only the source sentence’s prefixes. Af-
ter waiting for k-1 source subwords, the system
reads a source subword and then predicts a target
subword alternately until <eos> is detected. An
example of wait 1 is shown in Figure 1.

The contributions of this paper are as follows:

• We propose a domain adaption approach
called "in-domain mixed fine-tuning", which
empirically proved to be better than fine-
tuning while mitigating overfitting.

• All our code has been open sourced, see
USST1.

1https://github.com/tyy2022/USST_
AutoSimultrans2022
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Figure 1: An example of prefix-to-prefix (wait 1).

2 Data

We participate in the Chinese-English streaming
transcription track , where each sentence is broken
into lines whose length is incremented by one word
until the sentence is completed. An example is
shown in Table 1.

Streaming transcription Translation
我
我下 I
我下面
我下面来 ’m
我下面来讲
我下面来讲我 going
我下面来讲我们
我下面来讲我们这 to
我下面来讲我们这段 talk
我下面来讲我们这段故
我下面来讲我们这段故事 about
我下面来讲我们这段故事。 this story.

Table 1: An example of streaming input and output.

For pre-training, we use the CWMT21 paral-
lel corpus (9.1M) 2, and we fine-tune the pre-
trained model using transcription and translation of
the BSTC (Baidu Speech Translation Corpus,37K)
(Zhang et al., 2021), shown in Table 2. We also
use CWMT’s 10M Chinese monolingual data for
synthetic data generation.

Similar to (Ng et al., 2019; Meng et al., 2020),
we preprocess the data as follows:

• Word Segmentation: For Chinese, we use the
open-source Chinese word segmentation tool
jieba 3 for word segmentation. For English,
we adopt punctuation-normalization, tokeniza-
tion and truecasing with Moses scripts4.

• Length filter: We remove sentences that are
longer than 250 words and sentence pairs with
a source/target length ratio exceeding 2.5.

2http://mteval.cipsc.org.cn:81/
agreement/AutoSimTrans

3https://github.com/fxsjy/jieba
4https://github.com/moses-smt/

mosesdecoder

• Langage identification (langid) (Lui and Bald-
win, 2012): We use fastText5 for language
identification filtering, which removes sen-
tence pairs that are not predicted as the correct
language on either side.

• Deduplication: Remove duplicate sentences
in Chinese monolingual data.

• Byte-pair-encoding (BPE) (Sennrich et al.,
2016)6: For both the Chinese and English
sides, we use BPE with 32K operations.

See Table 3 for details on the filtered data size.

Datasets Domain Train size Dev size
CWMT21 General 9,023,708 1011
BSTC Spoken 37,901 956

Table 2: Statistics of Chinese→English parallel corpus.

Zh-En Zh Mono
no filter 9.1M 10M
+length filter 8.9M 10M
+langid filter 8.8M 10M
+deduplication - 6.8M

Table 3: Number of sentences in bitext and mono
datasets for different filtering scheme

3 System Overview

3.1 Baseline System

As shown in previous work (Wang et al., 2019;
Sun et al., 2019; Meng et al., 2020), increasing the
depth of the Transformer encoder can substantially
improve model performance, therefore we train the
Transformer with deep encoder to obtain a better
source representation.

In addition, in order to have both the high per-
formance of post-norm and the stable training of
pre-norm (Nguyen and Salazar, 2019), we use the
methods mentioned in DeepNet (Wang et al., 2022),
including a normalization function deepnorm that
modifies the residual connection and a theoretically
derived initialization. Our model configurations are
shown in Table 4.

5https://github.com/facebookresearch/
fastText

6https://github.com/rsennrich/
subword-nmt
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Configuration Value
Encoder depth 12
Decoder depth 6
Attention heads 8
Embedding dim 512
FFN size 2048
Chinese vocab size 45942
English vocab size 32151
dropout 0.1

Table 4: Model Configuration

For training the full-sentence translation model,
given the source sentence x, the probability of pre-
dicting the target sentence y is as shown in Eq. 1,
and the training objective is to minimize the nega-
tive log-likelihood as shown in Eq. 2.

p(y|x) =
|y|∏

t=1

p(yt|x, y<t; θ) (1)

lossfull(θ) = −
∑

(x,y)∈D
logpg(y|x; θ) (2)

The batch size for training is 4,096 tokens per
GPU, and we trained our model for 7 epochs on 4
NVIDIA V100 GPUs for about 10 hours.

3.2 Data Synthesis

In order to improve the model performance, we
used self-training and back-translation to synthe-
size pseudo-parallel corpus. Before using the two
methods, we averaged 3 best checkpoints.

Self-training (He et al., 2019; Chen et al., 2020)
uses a source-to-target model to generate synthetic
pairs from source-side monolingual data to aug-
ment the original parallel corpus. We combined
2M Chinese monolingual data with 2M Chinese
sentences randomly sampled from the CWMT par-
allel corpus, yielding a total of 4M monolingual for
forward translation.

Reversely, back-translation (Sennrich et al.,
2015; Edunov et al., 2018) first trains a target-to-
source model, which then utilizes target-side mono-
lingual data to synthesis a pseudo-parallel corpus.
We randomly select 2M English sentences from the
CWMT parallel corpus for back-translation.

We set the beam size to 5 for data generation,
and then filtered out sentence pairs with normalized
log score less than -3, resulting in a total of 5.7M
pseudo-parallel sentences. Finally, we combined
the pseudo corpus and the CWMT corpus to get a

total of 14.5M sentences, and continued to train the
forward model for 2 epochs, for about 2.5 hours on
4 V100 GPUSs.

3.3 Domain Adaption
A simple yet effective method for improving trans-
lation quality on the downstream task is fine-tuning
with domain data,which is known as domain adap-
tion (Luong and Manning, 2015). We train for
another 2 epochs on the BSTC dataset with pre-
trained model. Furthermore, we obverse that fine-
tuning on limited spoken corpus lead to overfit
quickly, as evidenced by the significant improve-
ment on the BSTC development set while degrades
rapidly on the CWMT development set.

In order to solve this issue, we explored mixed
fine-tuning, an advanced domain adaption method
that fine tunes a pre-trained model on a mixed cor-
pus of in-domain and out-domain corpora. In addi-
tion, domain tags are added to all corpora to denote
specific domains. In our experiments, we randomly
sample 0.1M corpus from CWMT and upsample
BSTC to 0.1M, then mix them up and shuffle ran-
domly as for training set. For development set, we
directly use the development set of BSTC rather
than mixing in-domain and out-of-domain develop-
ment sets.

We also verified the domain tags’ efficacy and
placement, the results show that appending the do-
main tags to source sentence performs best. How-
ever, in simultaneous translation task, this is unac-
ceptable since the prefix-to-prefix model will not
see the tag at the beginning.

To address this problem, we identify a 0.1M
subset of CWMT that is most similar to BSTC
by in-domain data filtering, then mixed the subset
with upsampled 0.1M BSTC data. On the one hand,
mixing increases the amount of domain data. On
the other hand, there is no need to add tags because
the mixed data only contains spoken domain.

For in-domain data filtering, given an in-domain
data I , in this case BSTC, and a non-domain spe-
cific data N , in this case CWMT, we want to find
the subset NI that is drawn from the same distribu-
tion as I . Using Bayes’ rule, we can calculate the
probability that sentences in N is drawn from NI

for any given sentences, as shown in Eq. 3.

P (NI |s,N) =
P (s|NI)P (NI |N)

P (s|N)
(3)

logP (NI |s,N) = logP (s|I)− logP (s|N) (4)
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Because I and NI are drawn from the same dis-
tribution, we use P (s|I) instead of P (s|NI). Be-
sides, we neglect the P (NI |N) term because it will
be constant for any given I and N .

Equivalently, in the log domain, the score of a
sentence can be calculated as Eq. 4. This is sim-
ilar to working with the cross-entropy difference:
HI(s)−HN (s), where HI(s) and HN (s) are the
length-normalized cross entropy scores for a sen-
tence s according to language models LI and LN .

Score(p)abs = |PI(p)− PN (p)| (5)

Score(p)noabs = PI(p)− PN (p) (6)

For simplicity, in this paper, we replace the
monolingual sentence s with the sentence pair p
drawn from non-domain corpus, the n-gram lan-
guage model with Neural Machine Translation
(NMT) model, the cross-entropy difference with
perplexity absolute difference, as shown in Eq. 5,
where PN (p) and PI(p) are the perplexity scores
for a sentence pair p using an non-domain NMTN

model (pre-trained on CWMT) and an in-domain
NMTI model (fine-tuned on BSTC), respectively.
We extracted 2M corpus from CWMT to calcu-
late the absolute difference of perplexity scores,
and screened 0.1M sentence pairs with the lowest
scores, or about 5% of extracted data. We also tried
to use the perplexity difference (see Eq. 6).

3.4 Ensemble

Averaging checkpoints is an easy but powerful en-
semble method. We performed in-domain mix fine-
tuning twice with two different random seeds, each
taking the highest BLEU score checkpoint on the
BSTC development set (up to 0.6 BLEU improve-
ments).

System BLEU AL
pre-train 19.04 24.38
FT 25.11 24.35
In MF (abs) 26.35 24.33
+ensemble 26.96 24.34

Table 5: BLEU and Average Lagging on BSTC dev set.
("MF": Mixed fine-tuning)

3.5 Wait-k

The wait-k policy (Ma et al., 2018) refers to
write target word yt after reading source-side pre-

fix (x1..xt+k−1). Let g(t) be a monotonic non-
decreasing function of t that indicates the num-
ber of source words read by the encoder when
writing the target word yt. Unlike full-sentence
translation, the wait-k policy uses the source prefix
(x1, . . . , xg(t)) rather than the whole sentence x to
generate yt: p(yt|x≤g(t), y<t). Thus, the decoding
probability is shown in Eq. 7, and given training
data D, the training objective is shown in Eq. 8.

pg(y|x) =
|y|∏

t=1

p(yt|x≤g(t), y<t; θ) (7)

lossg(θ) = −
∑

(x,y)∈D
logpg(y|x; θ) (8)

For k=1,3,5,7 we train 600 steps, and 300 steps
for k=9 on the BSTC training set. Training more
steps causes reduction of BLEU on the BSTC de-
velopment set.

4 Experiments

Our system is implemented with the PaddlePaddle7

framework, and our experiments are carried out
on AI Studio8 with 4 NVIDIA V100 GPU each of
which has 32 GB memory. (We also benchmarked
our code against fairseq 9 , see Appendix A)

4.1 Settings

For all experiments, we use the Adam optimizer
with β1 = 0.9, β2 = 0.98. The initial learning rate
is 1e-7, grows linearly to peak, then decayed pro-
portionally to the inverse square root of the step
number. During the training phase, we set peak
learning rate to 5e-4, warmup step= 4000, max
tokens= 4096, and update frequency = 4. Label
smoothing with 0.1 is also adopted. The specific
training parameters are shown in Table 7. We set
beam size to 5 and length penalty to 1 during de-
coding.

4.2 Post-processing

For the post-processing after wait-k decoding, we
apply de-truecaseing and de-tokenizing on the En-
glish translations with the scripts given in Moses.

7https://github.com/PaddlePaddle
8https://aistudio.baidu.com/aistudio/

index
9https://github.com/facebookresearch/

fairseq
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System CWMT Dev BSTC Dev
Pre-train 27.39 16.93
+Fine-tuning 22.24 20.46
Self-training + Back-translation 28.77 16.55
+Fine-tuning 22.14 20.13
MF w/o tags 24.54 20.13
MF train tags(→) 24.74 19.23
MF train/test tags(→) 24.46 20.86
MF train tags(←) 24.99 19.60
MF train/test tags(←) 24.57 20.31
In MF (abs) 24.47 21.47
+ ensemble 24.91 21.75
In MF (no abs) 24.05 21.14

Table 6: Translation quality of our Chinese→English system. ("MF": Mixed fine-tuning; "w/o tags": With out tags;
"train tags": Only add tags to the training set; "train/test tags": Add tags to both the training and test set; "→/←":
Refers to whether to append or prepend tags to source text; "In MF": In-domain Mixed fine-tuning. )

Parameter Pre-train Fine-tune Wait-k
Learning rate 5e-4 5e-5 5e-5
Warmup step 4000 500 500
Max tokens 4096 4096 512
Update frequency 4 1 1
Training time 7e 2e 600s

Table 7: Traing parameters. ("e": Epoch number; "s": Step number.)

4.3 Evaluation Metric
We use BLEU (Papineni et al., 2002) 10 and Aver-
age Lagging (AL) (Ma et al., 2018) 11 to evaluate
translation quality and latency respectively. AL
measures the degree the user is out of sync with
the speaker. As shown in Eq.9-10, t is decoding
step, τ is cut-off decoding step where source sen-
tence is finished, g(t) denotes the number of source
words read by the encoder at decoding step t, and
r = |x|/|y| is the target-to-source length ratio. The
smaller the AL (roughly equivalent to k) is, the
more real-time the simultaneous translation system
is.

ALg(x, y) =
1

τ

τ∑

t=1

g(t)− t− 1

r
(9)

where τg(|x|) = min{t|g(t) = |x|} (10)

4.4 Results and Analysis
Table 6 shows the translation quality variation of
our system on the validation sets of CWMT and

10https://dataset-bj.cdn.bcebos.com/
qianyan/AST_Challenge.zip

11https://github.com/autosimtrans/
SimulTransBaseline/blob/master/latency.
py

BSTC. The fine-tuning resulted in a significant im-
provement of 3.5 BLEU on BSTC, while dropping
rapidly on CWMT with 5.1 BLEU. We observe that
although using self-training and back-translation
improves CWMT by 1.3 BLEU, it decreases by
0.4 BLEU on BSTC. This may be overfitting on
the general domain and further deviating from the
spoken domain. So in the later experiments, we
directly use the pre-trained model to continue fine-
tuning.

Lines 5–9 depict the mixed fine-tuning discussed
in Section 3.3. We experimented with whether and
where to add a tag, and discovered that adding tag
at the end of source text works best, which is in line
with the original paper’s conclusion. The mixed
fine-tuning reached 20.86 BLEU, a 0.4 BLEU im-
provement over the fine-tuning.

Finally, the in-domain mixed fine-tuning pro-
posed in this paper is 0.6 BLEU better than mixed-
fine-tuning, and after averaging two checkpoints,
it further improved by 0.3 points to 21.75 BLEU,
which is 1.3 BLEU higher than fine-tuning. In ad-
dition, we attempted to select the in-domain data
using the perplexity difference (last row of Table 6,
corresponding to Eq. 6), but the experimental re-

47



sults proved to be less effective than the absolute
value of the perplexity difference.

Table 5 and Figure 2 illustrates the translation
quality and latency results after wait-k training. We
set k=1, 3, 5, 7, 9, and train 600 steps until the
training perplexity starts to rise. We only plot the
results of using ensemble checkpoint for wait-k
training since the effect of using in-domain mixed
fine-tuning does not significantly exceed fine-tune
when using wait-k training.

Figure 2: Translation quality (BLEU) against latency
metric (AL) on Chinese→English (BSTC) simultane-
ous translation, showing the results of wait-k and full-
sentences (k=-1) of the offline system. "In MF +ensem-
ble" means using averaged checkpoints of the In-domain
Mixed fine-tuning to perform wait-k training.

5 Conclusion

In this paper we describe our Chinese-to-English
simultaneous translation system, which uses a deep
Transformer to improve translation quality and
adopts wait-k policy (Ma et al., 2018) to reduce
latency. Besides, for better domain adaption, we
combined mixed fine-tuning (Chu et al., 2017) with
in-domain data filtering (Moore and Lewis, 2010;
Ng et al., 2019) and proposed a new domain adap-
tion method called “in-domain mixed fine-tuning”,
which is empirically more effective than fine-tuning
and mixed fine-tuning.

In our future work, we plan to validate the effec-
tive of our proposed in-domain mixed fine-tuning
on more datasets, while investigating some novel
domain adaption methods. We also plan to research
on some dynamic read-write policies in order to
better balance quality and latency for simultaneous
translation tasks.
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A Appendix: Benchmarking comparison
of paddle and fairseq

We subsampled the CWMT dataset to 2M size, set
the same parameters and then trained 20 epochs
with fairseq and paddle’s Transformer respectively,
and the experimental results are as Table 8.

Codebase Architecture BLEU
Fairseq base 23.08
Paddle base 23.18
Paddle base+deepnorm 23.15
Paddle 12+6+deepnorm 23.12

Table 8: A benchmark comparison of Transformers
with different architecture implemented using paddle
and fairseq.

where “base” is the Transformer base; "deep-
norm" means using the initialization and residual
connection modification methods in DeepNet, and
the default initialization is the same as fairseq.
“12+6” means 12-layer encoder and 6-layer de-
coder, which is used in this paper.

We observed that the Paddle version of the Trans-
former performed slightly better the fairseq version.
Aside from that, the Transformer base seems to
outperform our implementation of deepnorm, prob-
ably due to the size of the dataset. We will test it
on a larger dataset in the future.
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