@inproceedings{wambsganss-etal-2022-alen,
title = "{ALEN} App: Argumentative Writing Support To Foster {E}nglish Language Learning",
author = "Wambsganss, Thiemo and
Caines, Andrew and
Buttery, Paula",
editor = {Kochmar, Ekaterina and
Burstein, Jill and
Horbach, Andrea and
Laarmann-Quante, Ronja and
Madnani, Nitin and
Tack, Ana{\"\i}s and
Yaneva, Victoria and
Yuan, Zheng and
Zesch, Torsten},
booktitle = "Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bea-1.18",
doi = "10.18653/v1/2022.bea-1.18",
pages = "134--140",
abstract = "This paper introduces a novel tool to support and engage English language learners with feedback on the quality of their argument structures. We present an approach which automatically detects claim-premise structures and provides visual feedback to the learner to prompt them to repair any broken argumentation structures. To investigate, if our persuasive feedback on language learners{'} essay writing tasks engages and supports them in learning better English language, we designed the ALEN app (Argumentation for Learning English). We leverage an argumentation mining model trained on texts written by students and embed it in a writing support tool which provides students with feedback in their essay writing process. We evaluated our tool in two field-studies with a total of 28 students from a German high school to investigate the effects of adaptive argumentation feedback on their learning of English. The quantitative results suggest that using the ALEN app leads to a high self-efficacy, ease-of-use, intention to use and perceived usefulness for students in their English language learning process. Moreover, the qualitative answers indicate the potential benefits of combining grammar feedback with discourse level argumentation mining.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wambsganss-etal-2022-alen">
<titleInfo>
<title>ALEN App: Argumentative Writing Support To Foster English Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thiemo</namePart>
<namePart type="family">Wambsganss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Caines</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paula</namePart>
<namePart type="family">Buttery</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronja</namePart>
<namePart type="family">Laarmann-Quante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitin</namePart>
<namePart type="family">Madnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaïs</namePart>
<namePart type="family">Tack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Yaneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Zesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a novel tool to support and engage English language learners with feedback on the quality of their argument structures. We present an approach which automatically detects claim-premise structures and provides visual feedback to the learner to prompt them to repair any broken argumentation structures. To investigate, if our persuasive feedback on language learners’ essay writing tasks engages and supports them in learning better English language, we designed the ALEN app (Argumentation for Learning English). We leverage an argumentation mining model trained on texts written by students and embed it in a writing support tool which provides students with feedback in their essay writing process. We evaluated our tool in two field-studies with a total of 28 students from a German high school to investigate the effects of adaptive argumentation feedback on their learning of English. The quantitative results suggest that using the ALEN app leads to a high self-efficacy, ease-of-use, intention to use and perceived usefulness for students in their English language learning process. Moreover, the qualitative answers indicate the potential benefits of combining grammar feedback with discourse level argumentation mining.</abstract>
<identifier type="citekey">wambsganss-etal-2022-alen</identifier>
<identifier type="doi">10.18653/v1/2022.bea-1.18</identifier>
<location>
<url>https://aclanthology.org/2022.bea-1.18</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>134</start>
<end>140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ALEN App: Argumentative Writing Support To Foster English Language Learning
%A Wambsganss, Thiemo
%A Caines, Andrew
%A Buttery, Paula
%Y Kochmar, Ekaterina
%Y Burstein, Jill
%Y Horbach, Andrea
%Y Laarmann-Quante, Ronja
%Y Madnani, Nitin
%Y Tack, Anaïs
%Y Yaneva, Victoria
%Y Yuan, Zheng
%Y Zesch, Torsten
%S Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F wambsganss-etal-2022-alen
%X This paper introduces a novel tool to support and engage English language learners with feedback on the quality of their argument structures. We present an approach which automatically detects claim-premise structures and provides visual feedback to the learner to prompt them to repair any broken argumentation structures. To investigate, if our persuasive feedback on language learners’ essay writing tasks engages and supports them in learning better English language, we designed the ALEN app (Argumentation for Learning English). We leverage an argumentation mining model trained on texts written by students and embed it in a writing support tool which provides students with feedback in their essay writing process. We evaluated our tool in two field-studies with a total of 28 students from a German high school to investigate the effects of adaptive argumentation feedback on their learning of English. The quantitative results suggest that using the ALEN app leads to a high self-efficacy, ease-of-use, intention to use and perceived usefulness for students in their English language learning process. Moreover, the qualitative answers indicate the potential benefits of combining grammar feedback with discourse level argumentation mining.
%R 10.18653/v1/2022.bea-1.18
%U https://aclanthology.org/2022.bea-1.18
%U https://doi.org/10.18653/v1/2022.bea-1.18
%P 134-140
Markdown (Informal)
[ALEN App: Argumentative Writing Support To Foster English Language Learning](https://aclanthology.org/2022.bea-1.18) (Wambsganss et al., BEA 2022)
ACL