@inproceedings{skidmore-moore-2022-incremental,
title = "Incremental Disfluency Detection for Spoken Learner {E}nglish",
author = "Skidmore, Lucy and
Moore, Roger",
editor = {Kochmar, Ekaterina and
Burstein, Jill and
Horbach, Andrea and
Laarmann-Quante, Ronja and
Madnani, Nitin and
Tack, Ana{\"\i}s and
Yaneva, Victoria and
Yuan, Zheng and
Zesch, Torsten},
booktitle = "Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bea-1.31",
doi = "10.18653/v1/2022.bea-1.31",
pages = "272--278",
abstract = "Incremental disfluency detection provides a framework for computing communicative meaning from hesitations, repetitions and false starts commonly found in speech. One application of this area of research is in dialogue-based computer-assisted language learning (CALL), where detecting learners{'} production issues word-by-word can facilitate timely and pedagogically driven responses from an automated system. Existing research on disfluency detection in learner speech focuses on disfluency removal for subsequent downstream tasks, processing whole utterances non-incrementally. This paper instead explores the application of laughter as a feature for incremental disfluency detection and shows that when combined with silence, these features reduce the impact of learner errors on model precision as well as lead to an overall improvement of model performance. This work adds to the growing body of research incorporating laughter as a feature for dialogue processing tasks and provides further support for the application of multimodality in dialogue-based CALL systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="skidmore-moore-2022-incremental">
<titleInfo>
<title>Incremental Disfluency Detection for Spoken Learner English</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lucy</namePart>
<namePart type="family">Skidmore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Moore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronja</namePart>
<namePart type="family">Laarmann-Quante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitin</namePart>
<namePart type="family">Madnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaïs</namePart>
<namePart type="family">Tack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Yaneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Zesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Incremental disfluency detection provides a framework for computing communicative meaning from hesitations, repetitions and false starts commonly found in speech. One application of this area of research is in dialogue-based computer-assisted language learning (CALL), where detecting learners’ production issues word-by-word can facilitate timely and pedagogically driven responses from an automated system. Existing research on disfluency detection in learner speech focuses on disfluency removal for subsequent downstream tasks, processing whole utterances non-incrementally. This paper instead explores the application of laughter as a feature for incremental disfluency detection and shows that when combined with silence, these features reduce the impact of learner errors on model precision as well as lead to an overall improvement of model performance. This work adds to the growing body of research incorporating laughter as a feature for dialogue processing tasks and provides further support for the application of multimodality in dialogue-based CALL systems.</abstract>
<identifier type="citekey">skidmore-moore-2022-incremental</identifier>
<identifier type="doi">10.18653/v1/2022.bea-1.31</identifier>
<location>
<url>https://aclanthology.org/2022.bea-1.31</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>272</start>
<end>278</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incremental Disfluency Detection for Spoken Learner English
%A Skidmore, Lucy
%A Moore, Roger
%Y Kochmar, Ekaterina
%Y Burstein, Jill
%Y Horbach, Andrea
%Y Laarmann-Quante, Ronja
%Y Madnani, Nitin
%Y Tack, Anaïs
%Y Yaneva, Victoria
%Y Yuan, Zheng
%Y Zesch, Torsten
%S Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F skidmore-moore-2022-incremental
%X Incremental disfluency detection provides a framework for computing communicative meaning from hesitations, repetitions and false starts commonly found in speech. One application of this area of research is in dialogue-based computer-assisted language learning (CALL), where detecting learners’ production issues word-by-word can facilitate timely and pedagogically driven responses from an automated system. Existing research on disfluency detection in learner speech focuses on disfluency removal for subsequent downstream tasks, processing whole utterances non-incrementally. This paper instead explores the application of laughter as a feature for incremental disfluency detection and shows that when combined with silence, these features reduce the impact of learner errors on model precision as well as lead to an overall improvement of model performance. This work adds to the growing body of research incorporating laughter as a feature for dialogue processing tasks and provides further support for the application of multimodality in dialogue-based CALL systems.
%R 10.18653/v1/2022.bea-1.31
%U https://aclanthology.org/2022.bea-1.31
%U https://doi.org/10.18653/v1/2022.bea-1.31
%P 272-278
Markdown (Informal)
[Incremental Disfluency Detection for Spoken Learner English](https://aclanthology.org/2022.bea-1.31) (Skidmore & Moore, BEA 2022)
ACL