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Abstract

The maturity level of language models is now
at a stage in which many companies rely on
them to solve various tasks. However, while
research has shown how biased and harmful
these models are, systematic ways of integrat-
ing social bias tests into development pipelines
are still lacking. This short paper suggests how
to use these verification techniques in devel-
opment pipelines. We take inspiration from
software testing and suggest addressing social
bias evaluation as software testing. We hope to
open a discussion on the best methodologies to
handle social bias testing in language models.

1 Introduction
Current language models are now primarily de-
ployed on large infrastructures (e.g., HuggingFace
repository1) and used by many practitioners and
researchers with few lines of code. This releasing
mechanism has brought tremendous value to the
community as researchers everywhere can access
models, download them on their laptops, and run
experiments. However, these models are quickly
adopted without complete understanding their pos-
sible limitations (Bianchi and Hovy, 2021).

Recent literature is now rich of papers that
demonstrate how social bias is embedded in large
language models and propose many different ver-
ification and validation datasets (e.g., May et al.,
2019; Nozza et al., 2021; Nadeem et al., 2021, in-
ter alia). Researchers and practitioners can use all
these contributions to understand if a model is safe
to use or not. We will refer to these works and
the datasets used as verification as social bias tests
from this point on.

This literature often misses the long-term goal.
What is the point of having so many social bias
tests that effectively capture different aspects of
the problem if we do not find a systematic way
of using them? Indeed, this work is also inspired

1https://huggingface.co/

by the recent approaches and methodologies de-
fined to provide more comprehensive evaluations
of models (Ribeiro et al., 2020; Chia et al., 2022).

Indeed, other computer science fields have devel-
oped insights into how to handle testing. Software
development has long been wrestling with the need
for good evaluation practices for source code. For
example, Continuous Integration and Continuous
Deployment (CI/CD) is a general methodology in
software development. It assumes frequent test-
ing to ensure that the product under development
passes specific qualitative tests that guarantee it
is working. In this direction, frequent testing of
language models can be part of the solution.

The main contribution of this short paper is first
to identify the main recurring themes and the pri-
mary methodologies of social bias literature. We
then suggest a more practical and developmental
direction: all these methods can be used the same
way as tests in software testing pipelines. Unsta-
ble/unsafe software should not go into production,
which is also true for language models.

We are aware that a single social bias test can-
not provide a complete picture of the problems
and that we cannot treat a model that passes the
tests as entirely safe. Nonetheless, we believe that
some frequent tests are better than no tests. As a
community, we need to come together and work
closely to stress test these models even during the
development phase.

Contributions Our contribution is twofold: we
first give an overview of the literature on social bias
tests and explore the main themes and methods.
We then suggest that this literature can be used in
practical contexts to frequently evaluate language
models to understand better how the tools we use
can be harmful. With this work, we hope to start
a discussion on the best methodologies to handle
social bias testing in language models as we believe
this is a fundamental step to sustain the future and
correct usage of these technologies.
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2 Existing Social Bias tests
An overview of bias in NLP has been presented
in several work (Blodgett et al., 2020; Shah et al.,
2020; Hovy and Prabhumoye, 2021; Sheng et al.,
2021; Stanczak and Augenstein, 2021). Here, we
focus on the approaches proposed for contextual
embeddings. We illustrate the main themes that
have driven the developed of social bias tests. The
categories we are going to describe are not mutually
exclusive, however they showcase in a coherent
manner what has been done in the literature.

2.1 Word List-based

Several studies have been conducted to analyse and
determine the level of bias in static word embed-
dings in binary and multi-class scenarios (Boluk-
basi et al., 2016; Caliskan et al., 2017; Garg et al.,
2018; Swinger et al., 2019; Manzini et al., 2019;
Lauscher and Glavaš, 2019; Gonen and Goldberg,
2019). Several works applied these bias evaluations
to contextualized models by extracting static word
embeddings for them (Basta et al., 2019; Lauscher
et al., 2021; Wolfe and Caliskan, 2021).

Inspired by gender bias metrics for word embed-
dings, May et al. (2019) proposed the Sentence En-
coder Association Test (SEAT), a template-based
test founded on the Word Embedding Association
Test (WEAT) (Caliskan et al., 2017). Afterward,
Liang et al. (2020) used SEAT for measuring bias,
also considering the religious dimension.

2.2 Template-based

Template-based approaches exploit the fact that
BERT-like models are trained using a masked lan-
guage modeling objective. I.e., given a sentence
with omitted tokens indicated as [MASK], they
predict the masked tokens. The predictions for
these [MASK] tokens may provide us with some
insight into the bias embedded in the actual rep-
resentations. We can generate templates in two
different ways. First, by accounting for certain
targets (e.g., gendered words) and attributes (e.g.
career-related words) (Kurita et al., 2019; Zhang
et al., 2020; Dev et al., 2020). This enable, for
example, to compute the association between the
target male gender and the attribute programmer,
by feeding “[MASK] is a programmer” to BERT,
and compute the probability assigned to the sen-
tence “he is a programmer”. Another option is
to create templates coupling protected group tar-
gets with neutral predicates (e.g., “works as”, “is
known for”). For example, we can ask BERT to

complete “the woman is known for [MASK]” or
“the girl worked as [MASK].” Then, it is possible to
exploit lexicons (Nozza et al., 2021, 2022), or hate
speech (Ousidhoum et al., 2021; Sheng et al., 2019)
and sentiment classifiers Hutchinson et al. (2020);
Huang et al. (2020) to obtain a social bias score
from the template-based generated text. Ideally,
using a classifier lets us test the data more easily
and accurately than lexicons.

The same approach can be applied to natural
language generation models (Sheng et al., 2019;
Huang et al., 2020). The models are not fed with
a masked token but are asked to complete the tem-
plate. So, instead of a single word, they return a set
of words.

An interesting case has been proposed by
Choenni et al.. They look into what kinds of stereo-
typed information are collected by LLMs exploit-
ing a dataset comprising stereotypical attributes
for various social groups. The dataset was cre-
ated by feeding search engines queries that already
imply a stereotype about a specific social group
(e.g., ‘Why are Asian parents so’). Then, the au-
thors count how many of the stereotypes found by
the search engines are also encoded in the LLMs
through masked language modeling.

2.3 Crowdsourced-based

Few works have collected datasets to compute bias
scores. Nadeem et al. (2021) presented StereoSet,
a crowdsourced English dataset to measure stereo-
typical biases in four domains: gender, profession,
race, and religion. Nangia et al. (2020) introduced
CrowS-Pairs, a crowdsourced benchmark compris-
ing 1508 examples that cover stereotypes dealing
with nine types of bias. Both Nadeem et al. (2021);
Nangia et al. (2020) proposed a metric to measure
for how many examples the model prefers stereo-
typed sentences over less stereotyped sentences.

2.4 Social Media-based

Barikeri et al. (2021) propose a bias evaluation
framework for conversational LLMs using REDDIT-
BIAS, an English conversational data set grounded
in real-world human conversations from Reddit.
The authors propose a perplexity-based bias mea-
sure meant to quantify the amount of bias in genera-
tive language models along several bias dimensions.
Gehman et al. (2020) focus on collecting prompts
from the OpenWebText Corpus (Gokaslan and Co-
hen, 2019) and annotating them with the Perspec-
tive API to evaluate the toxicity of the messages.
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These messages are then split in half (a prompt and
a continuation) and are used to study, for exam-
ple, whether a model generates toxic continuations
from a non-toxic prompt.

2.5 Discussion

While many social bias tests have been provided
in the literature, they differ in methodology, cov-
ered languages, and protected groups. Most works
are on English. Only (Nozza et al., 2021; Ousid-
houm et al., 2021) considered languages beyond
English. The majority of work focused on gender
bias, and only a few investigated an extensive range
of targets (Nangia et al., 2020; Nadeem et al., 2021;
Ousidhoum et al., 2021; Barikeri et al., 2021). We
also found that Hutchinson et al. (2020); Huang
et al. (2020) did not provide data or code publicly.
Blodgett et al. (2021) presented a critical review
of some social bias tests and found significant is-
sues with noise, unnaturalness, and reliability of
the some work (Nangia et al., 2020; Nadeem et al.,
2021). Finally, it is important to highlight that so-
cial biases are different depending on the cultural
and historical context of application of the language
model.

This brief analysis demonstrates that no existing
social bias test is universal. While we may fill this
research gap in the future, for now, we suggest
using more than one test has to be used to measure
bias.

3 Integration
We describe the different modalities that can be
used to integrate social bias tests into development
pipelines.

3.1 Continuous Social Bias Verification

Software testing is at the heart of software devel-
opment. Without good evaluation, software easily
breaks in production, causing economic damage to
companies.

Most of the checks currently run to test language
models are structural. For example, does it produce
outputs correctly? Once fine-tuned, are the results
we get in a sensible range? We suggest that tests
should cover social biases.

We take inspiration from software testing and
suggest testing methodologies for language models.
In a CI/CD (continuous integration and continuous
development) setting, code is continuously pushed
into the repository and tested to ensure the model
is stable. Software is deployed if and only if tests

are correctly passed. We believe that we should
replicate this pipeline in the development of lan-
guage models. Every time a new model is released,
we can run tests to verify if and how the model is
hurtful.

Note that this is indeed a real problem. Many
pipelines are now based on HuggingFace APIs that
directly download the model from the HuggingFace
Hub. Users might not know what happens on the
backend: what happens when a model is updated,
and the user downloads it thinking it is the same
as the older version? We are not sure how many
users keep track of commits and changelogs, and
this might create a misunderstanding about which
model is being used and with which training setup.

3.2 Badge System

Publishers may help maintain the fairness of the re-
search ecosystem by establishing a badging mecha-
nism. This approach would increase the likelihood
that an LLM will be tested in advance for social
biases and that end-users will pay attention to this
issue.

Here, we propose a badging system based on the
ACM one2 and the one proposed for the NAACL
2022 reproducibility track3. We identified three
possible badges: Social Bias Evaluated, Social Bias
Available, and Results Validated.

Social Bias Evaluated This badge is given to
LLMs who have successfully run the social bias
tests. This badge does not require the scores to be
made publicly available.

Social Bias Available This badge is given to
LLMs that made the results of social bias tests
retrievable. We propose to design one badge for
each implemented social bias test and to show it
along with the associated score. We discourage us-
ing badges as binary (i.e., test passed or test failed)
for these particular cases. Considering the prob-
lem as binary might imply that a passing model is
entirely free of bias, even if this is not the case.

Results Validated This badge is given to
LLMs in which the social bias test results were
successfully attained by a person or team other
than the author.

2https://www.acm.org/
publications/policies/
artifact-review-and-badging-current

3https://2022.naacl.org/blog/
reproducibility-track/
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…
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Figure 1: The figure shows an example of the possible integration of Social Bias tests into a development pipeline.
A model can be developed and trained on a server and pushed online. Then we can use an automation tool (e.g.,
Github Actions) to start an evaluation engine that will eventually generate the predictions for the models. Once
scored, the model can be released online with badges identifying possible issues that one might encounter with the
model.

Badging is also a standard and straightforward
system to showcase software validity in an online
repository. These badges are often used to show
information about the number of downloads, the
test coverage, the quality of the documentation and
allow users to understand the quality of what they
are using with a quick look.

Figure 1 shows a possible integration of testing
for harms in development pipelines. We can de-
velop the models on a local server and push this
model online after training is finished (with Git
LSF, for example). Pushing should automatically
start an evaluation pipeline (something close to
Github Actions) that starts an evaluation engine:
this engine should load the models and run the
social bias tests. Once the results are collected,
and the metrics have been scored, the model can
finally appear on online repositories with badges
that identify if and how the test have been run with
the respective scores.

3.3 Limits of this Integration

An open question is if the test should be available
to the developer of the models. On the one hand,
releasing the tests makes it easier for everyone to
evaluate their models internally before release. On
the other hand, this makes it easier to “train on test”
and hack the system to obtain better scores.

Hiding the test sets from the developer is closer

to standard Quality And Assurance developers in
companies that are meant to test the interfaces and
the code that the developer has built. This approach
is also in line with challenges that do not share
test data and in which models are submitted using
docker containers that are then internally evaluated
and scored. As Goodhart’s law states, “When a
measure becomes a target, it ceases to be a good
measure”. Thus we should be aware that social bias
tests cannot be the panacea for language models
problems. We cannot rely only on a test to assess
the validity of a model.4

Another point in discussion is that the pipelines
we have designed are meant to evaluate intrinsic
bias in language models. Unfortunately, this does
not consider the verification of bias in downstream
application: this extrinsic bias has been found to
be poorly correlated with the original bias of lan-
guage models (Goldfarb-Tarrant et al., 2021). How-
ever, we want to point out the an additional set of
application-specific tests could be used to evaluate
the models adapted for these tasks: for example, re-
searchers could use hate speech check tests (Dixon
et al., 2018; Nozza et al., 2019; Röttger et al., 2021)
to verify social biases in hate speech detection mod-
els.

4Albeit, this comment is true for any measure we use in
the field.
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4 Conclusion
This paper proposes to use social bias tests in model
development pipelines. We believe that our work
can be helpful to make the development of these
models fairer and easier to sustain from an ethical
point of view. Future work is needed to answer
several questions about this system. For example,
who creates the tests and how can we make sure
that these tests can be trusted? It becomes critical
to involve marginalized communities to develop
more sustainable and effective social bias tests.
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