@inproceedings{boissonnet-etal-2022-explainable,
title = "Explainable Assessment of Healthcare Articles with {QA}",
author = "Boissonnet, Alodie and
Saeidi, Marzieh and
Plachouras, Vassilis and
Vlachos, Andreas",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bionlp-1.1",
doi = "10.18653/v1/2022.bionlp-1.1",
pages = "1--9",
abstract = "The healthcare domain suffers from the spread of poor quality articles on the Internet. While manual efforts exist to check the quality of online healthcare articles, they are not sufficient to assess all those in circulation. Such quality assessment can be automated as a text classification task, however, explanations for the labels are necessary for the users to trust the model predictions. While current explainable systems tackle explanation generation as summarization, we propose a new approach based on question answering (QA) that allows us to generate explanations for multiple criteria using a single model. We show that this QA-based approach is competitive with the current state-of-the-art, and complements summarization-based models for explainable quality assessment. We also introduce a human evaluation protocol more appropriate than automatic metrics for the evaluation of explanation generation models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="boissonnet-etal-2022-explainable">
<titleInfo>
<title>Explainable Assessment of Healthcare Articles with QA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alodie</namePart>
<namePart type="family">Boissonnet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marzieh</namePart>
<namePart type="family">Saeidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vassilis</namePart>
<namePart type="family">Plachouras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Workshop on Biomedical Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The healthcare domain suffers from the spread of poor quality articles on the Internet. While manual efforts exist to check the quality of online healthcare articles, they are not sufficient to assess all those in circulation. Such quality assessment can be automated as a text classification task, however, explanations for the labels are necessary for the users to trust the model predictions. While current explainable systems tackle explanation generation as summarization, we propose a new approach based on question answering (QA) that allows us to generate explanations for multiple criteria using a single model. We show that this QA-based approach is competitive with the current state-of-the-art, and complements summarization-based models for explainable quality assessment. We also introduce a human evaluation protocol more appropriate than automatic metrics for the evaluation of explanation generation models.</abstract>
<identifier type="citekey">boissonnet-etal-2022-explainable</identifier>
<identifier type="doi">10.18653/v1/2022.bionlp-1.1</identifier>
<location>
<url>https://aclanthology.org/2022.bionlp-1.1</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explainable Assessment of Healthcare Articles with QA
%A Boissonnet, Alodie
%A Saeidi, Marzieh
%A Plachouras, Vassilis
%A Vlachos, Andreas
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 21st Workshop on Biomedical Language Processing
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F boissonnet-etal-2022-explainable
%X The healthcare domain suffers from the spread of poor quality articles on the Internet. While manual efforts exist to check the quality of online healthcare articles, they are not sufficient to assess all those in circulation. Such quality assessment can be automated as a text classification task, however, explanations for the labels are necessary for the users to trust the model predictions. While current explainable systems tackle explanation generation as summarization, we propose a new approach based on question answering (QA) that allows us to generate explanations for multiple criteria using a single model. We show that this QA-based approach is competitive with the current state-of-the-art, and complements summarization-based models for explainable quality assessment. We also introduce a human evaluation protocol more appropriate than automatic metrics for the evaluation of explanation generation models.
%R 10.18653/v1/2022.bionlp-1.1
%U https://aclanthology.org/2022.bionlp-1.1
%U https://doi.org/10.18653/v1/2022.bionlp-1.1
%P 1-9
Markdown (Informal)
[Explainable Assessment of Healthcare Articles with QA](https://aclanthology.org/2022.bionlp-1.1) (Boissonnet et al., BioNLP 2022)
ACL
- Alodie Boissonnet, Marzieh Saeidi, Vassilis Plachouras, and Andreas Vlachos. 2022. Explainable Assessment of Healthcare Articles with QA. In Proceedings of the 21st Workshop on Biomedical Language Processing, pages 1–9, Dublin, Ireland. Association for Computational Linguistics.