@inproceedings{khandelwal-etal-2022-biomedical,
title = "Biomedical {NER} using Novel Schema and Distant Supervision",
author = "Khandelwal, Anshita and
Kar, Alok and
Chikka, Veera Raghavendra and
Karlapalem, Kamalakar",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bionlp-1.15",
doi = "10.18653/v1/2022.bionlp-1.15",
pages = "155--160",
abstract = "Biomedical Named Entity Recognition (BMNER) is one of the most important tasks in the field of biomedical text mining. Most work so far on this task has not focused on identification of discontinuous and overlapping entities, even though they are present in significant fractions in real-life biomedical datasets. In this paper, we introduce a novel annotation schema to capture complex entities, and explore the effects of distant supervision on our deep-learning sequence labelling model. For BMNER task, our annotation schema outperforms other BIO-based annotation schemes on the same model. We also achieve higher F1-scores than state-of-the-art models on multiple corpora without fine-tuning embeddings, highlighting the efficacy of neural feature extraction using our model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khandelwal-etal-2022-biomedical">
<titleInfo>
<title>Biomedical NER using Novel Schema and Distant Supervision</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anshita</namePart>
<namePart type="family">Khandelwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alok</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veera</namePart>
<namePart type="given">Raghavendra</namePart>
<namePart type="family">Chikka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kamalakar</namePart>
<namePart type="family">Karlapalem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Workshop on Biomedical Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Biomedical Named Entity Recognition (BMNER) is one of the most important tasks in the field of biomedical text mining. Most work so far on this task has not focused on identification of discontinuous and overlapping entities, even though they are present in significant fractions in real-life biomedical datasets. In this paper, we introduce a novel annotation schema to capture complex entities, and explore the effects of distant supervision on our deep-learning sequence labelling model. For BMNER task, our annotation schema outperforms other BIO-based annotation schemes on the same model. We also achieve higher F1-scores than state-of-the-art models on multiple corpora without fine-tuning embeddings, highlighting the efficacy of neural feature extraction using our model.</abstract>
<identifier type="citekey">khandelwal-etal-2022-biomedical</identifier>
<identifier type="doi">10.18653/v1/2022.bionlp-1.15</identifier>
<location>
<url>https://aclanthology.org/2022.bionlp-1.15</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>155</start>
<end>160</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Biomedical NER using Novel Schema and Distant Supervision
%A Khandelwal, Anshita
%A Kar, Alok
%A Chikka, Veera Raghavendra
%A Karlapalem, Kamalakar
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 21st Workshop on Biomedical Language Processing
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F khandelwal-etal-2022-biomedical
%X Biomedical Named Entity Recognition (BMNER) is one of the most important tasks in the field of biomedical text mining. Most work so far on this task has not focused on identification of discontinuous and overlapping entities, even though they are present in significant fractions in real-life biomedical datasets. In this paper, we introduce a novel annotation schema to capture complex entities, and explore the effects of distant supervision on our deep-learning sequence labelling model. For BMNER task, our annotation schema outperforms other BIO-based annotation schemes on the same model. We also achieve higher F1-scores than state-of-the-art models on multiple corpora without fine-tuning embeddings, highlighting the efficacy of neural feature extraction using our model.
%R 10.18653/v1/2022.bionlp-1.15
%U https://aclanthology.org/2022.bionlp-1.15
%U https://doi.org/10.18653/v1/2022.bionlp-1.15
%P 155-160
Markdown (Informal)
[Biomedical NER using Novel Schema and Distant Supervision](https://aclanthology.org/2022.bionlp-1.15) (Khandelwal et al., BioNLP 2022)
ACL
- Anshita Khandelwal, Alok Kar, Veera Raghavendra Chikka, and Kamalakar Karlapalem. 2022. Biomedical NER using Novel Schema and Distant Supervision. In Proceedings of the 21st Workshop on Biomedical Language Processing, pages 155–160, Dublin, Ireland. Association for Computational Linguistics.