@inproceedings{singha-roy-mercer-2022-biocite,
title = "{B}io{C}ite: A Deep Learning-based Citation Linkage Framework for Biomedical Research Articles",
author = "Singha Roy, Sudipta and
Mercer, Robert E.",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bionlp-1.23",
doi = "10.18653/v1/2022.bionlp-1.23",
pages = "241--251",
abstract = "Research papers reflect scientific advances. Citations are widely used in research publications to support the new findings and show their benefits, while also regulating the information flow to make the contents clearer for the audience. A citation in a research article refers to the information{'}s source, but not the specific text span from that source article. In biomedical research articles, this task is challenging as the same chemical or biological component can be represented in multiple ways in different papers from various domains. This paper suggests a mechanism for linking citing sentences in a publication with cited sentences in referenced sources. The framework presented here pairs the citing sentence with all of the sentences in the reference text, and then tries to retrieve the semantically equivalent pairs. These semantically related sentences from the reference paper are chosen as the cited statements. This effort involves designing a citation linkage framework utilizing sequential and tree-structured siamese deep learning models. This paper also provides a method to create a synthetic corpus for such a task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singha-roy-mercer-2022-biocite">
<titleInfo>
<title>BioCite: A Deep Learning-based Citation Linkage Framework for Biomedical Research Articles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Singha Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="given">E</namePart>
<namePart type="family">Mercer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Workshop on Biomedical Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research papers reflect scientific advances. Citations are widely used in research publications to support the new findings and show their benefits, while also regulating the information flow to make the contents clearer for the audience. A citation in a research article refers to the information’s source, but not the specific text span from that source article. In biomedical research articles, this task is challenging as the same chemical or biological component can be represented in multiple ways in different papers from various domains. This paper suggests a mechanism for linking citing sentences in a publication with cited sentences in referenced sources. The framework presented here pairs the citing sentence with all of the sentences in the reference text, and then tries to retrieve the semantically equivalent pairs. These semantically related sentences from the reference paper are chosen as the cited statements. This effort involves designing a citation linkage framework utilizing sequential and tree-structured siamese deep learning models. This paper also provides a method to create a synthetic corpus for such a task.</abstract>
<identifier type="citekey">singha-roy-mercer-2022-biocite</identifier>
<identifier type="doi">10.18653/v1/2022.bionlp-1.23</identifier>
<location>
<url>https://aclanthology.org/2022.bionlp-1.23</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>241</start>
<end>251</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BioCite: A Deep Learning-based Citation Linkage Framework for Biomedical Research Articles
%A Singha Roy, Sudipta
%A Mercer, Robert E.
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 21st Workshop on Biomedical Language Processing
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F singha-roy-mercer-2022-biocite
%X Research papers reflect scientific advances. Citations are widely used in research publications to support the new findings and show their benefits, while also regulating the information flow to make the contents clearer for the audience. A citation in a research article refers to the information’s source, but not the specific text span from that source article. In biomedical research articles, this task is challenging as the same chemical or biological component can be represented in multiple ways in different papers from various domains. This paper suggests a mechanism for linking citing sentences in a publication with cited sentences in referenced sources. The framework presented here pairs the citing sentence with all of the sentences in the reference text, and then tries to retrieve the semantically equivalent pairs. These semantically related sentences from the reference paper are chosen as the cited statements. This effort involves designing a citation linkage framework utilizing sequential and tree-structured siamese deep learning models. This paper also provides a method to create a synthetic corpus for such a task.
%R 10.18653/v1/2022.bionlp-1.23
%U https://aclanthology.org/2022.bionlp-1.23
%U https://doi.org/10.18653/v1/2022.bionlp-1.23
%P 241-251
Markdown (Informal)
[BioCite: A Deep Learning-based Citation Linkage Framework for Biomedical Research Articles](https://aclanthology.org/2022.bionlp-1.23) (Singha Roy & Mercer, BioNLP 2022)
ACL