@inproceedings{nejadgholi-etal-2022-towards,
title = "Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information",
author = "Nejadgholi, Isar and
Balkir, Esma and
Fraser, Kathleen and
Kiritchenko, Svetlana",
editor = "Bastings, Jasmijn and
Belinkov, Yonatan and
Elazar, Yanai and
Hupkes, Dieuwke and
Saphra, Naomi and
Wiegreffe, Sarah",
booktitle = "Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.blackboxnlp-1.18/",
doi = "10.18653/v1/2022.blackboxnlp-1.18",
pages = "225--237",
abstract = "Previous works on the fairness of toxic language classifiers compare the output of models with different identity terms as input features but do not consider the impact of other important concepts present in the context. Here, besides identity terms, we take into account high-level latent features learned by the classifier and investigate the interaction between these features and identity terms. For a multi-class toxic language classifier, we leverage a concept-based explanation framework to calculate the sensitivity of the model to the concept of sentiment, which has been used before as a salient feature for toxic language detection. Our results show that although for some classes, the classifier has learned the sentiment information as expected, this information is outweighed by the influence of identity terms as input features. This work is a step towards evaluating procedural fairness, where unfair processes lead to unfair outcomes. The produced knowledge can guide debiasing techniques to ensure that important concepts besides identity terms are well-represented in training datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nejadgholi-etal-2022-towards">
<titleInfo>
<title>Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isar</namePart>
<namePart type="family">Nejadgholi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Esma</namePart>
<namePart type="family">Balkir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathleen</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Kiritchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jasmijn</namePart>
<namePart type="family">Bastings</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanai</namePart>
<namePart type="family">Elazar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naomi</namePart>
<namePart type="family">Saphra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Wiegreffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous works on the fairness of toxic language classifiers compare the output of models with different identity terms as input features but do not consider the impact of other important concepts present in the context. Here, besides identity terms, we take into account high-level latent features learned by the classifier and investigate the interaction between these features and identity terms. For a multi-class toxic language classifier, we leverage a concept-based explanation framework to calculate the sensitivity of the model to the concept of sentiment, which has been used before as a salient feature for toxic language detection. Our results show that although for some classes, the classifier has learned the sentiment information as expected, this information is outweighed by the influence of identity terms as input features. This work is a step towards evaluating procedural fairness, where unfair processes lead to unfair outcomes. The produced knowledge can guide debiasing techniques to ensure that important concepts besides identity terms are well-represented in training datasets.</abstract>
<identifier type="citekey">nejadgholi-etal-2022-towards</identifier>
<identifier type="doi">10.18653/v1/2022.blackboxnlp-1.18</identifier>
<location>
<url>https://aclanthology.org/2022.blackboxnlp-1.18/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>225</start>
<end>237</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information
%A Nejadgholi, Isar
%A Balkir, Esma
%A Fraser, Kathleen
%A Kiritchenko, Svetlana
%Y Bastings, Jasmijn
%Y Belinkov, Yonatan
%Y Elazar, Yanai
%Y Hupkes, Dieuwke
%Y Saphra, Naomi
%Y Wiegreffe, Sarah
%S Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F nejadgholi-etal-2022-towards
%X Previous works on the fairness of toxic language classifiers compare the output of models with different identity terms as input features but do not consider the impact of other important concepts present in the context. Here, besides identity terms, we take into account high-level latent features learned by the classifier and investigate the interaction between these features and identity terms. For a multi-class toxic language classifier, we leverage a concept-based explanation framework to calculate the sensitivity of the model to the concept of sentiment, which has been used before as a salient feature for toxic language detection. Our results show that although for some classes, the classifier has learned the sentiment information as expected, this information is outweighed by the influence of identity terms as input features. This work is a step towards evaluating procedural fairness, where unfair processes lead to unfair outcomes. The produced knowledge can guide debiasing techniques to ensure that important concepts besides identity terms are well-represented in training datasets.
%R 10.18653/v1/2022.blackboxnlp-1.18
%U https://aclanthology.org/2022.blackboxnlp-1.18/
%U https://doi.org/10.18653/v1/2022.blackboxnlp-1.18
%P 225-237
Markdown (Informal)
[Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information](https://aclanthology.org/2022.blackboxnlp-1.18/) (Nejadgholi et al., BlackboxNLP 2022)
ACL