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Abstract
Some recent works observed the instability of
post-hoc explanations when input side pertur-
bations are applied to the model. This raises the
interest and concern in the stability of post-hoc
explanations. However, the remaining ques-
tion is: is the instability caused by the neu-
ral network model or the post-hoc explana-
tion method? This work explores the potential
source that leads to unstable post-hoc expla-
nations. To separate the influence from the
model, we propose a simple output probability
perturbation method. Compared to prior input
side perturbation methods, the output proba-
bility perturbation method can circumvent the
neural model’s potential effect on the expla-
nations and allow the analysis on the explana-
tion method. We evaluate the proposed method
with three widely-used post-hoc explanation
methods (LIME (Ribeiro et al., 2016), Kernel
Shapley (Lundberg and Lee, 2017a), and Sam-
ple Shapley (Strumbelj and Kononenko, 2010)).
The results demonstrate that the post-hoc meth-
ods are stable, barely producing discrepant ex-
planations under output probability perturba-
tions. The observation suggests that neural
network models may be the primary source
of fragile explanations.

1 Introduction

Despite the remarkable performance of neural net-
work models in natural language processing (NLP),
the lack of interpretability has raised much con-
cern in terms of their reliability and trustworthiness
(Zhang et al., 2021; Doshi-Velez and Kim, 2017;
Hooker et al., 2019; Jiang et al., 2018). A common
way to improve a model’s interpretability is to gen-
erate explanations for its predictions from the post-
hoc manner. We call these explanations post-hoc
explanations (Doshi-Velez and Kim, 2017; Mol-
nar, 2018). Post-hoc explanations demonstrate the
relationship between the input text and the model
prediction by identifying feature importance scores
(Du et al., 2019). In general, a feature with a higher

importance score is more important in contributing
to the prediction result. Based on feature impor-
tance scores, we can select top important features
as the model explanation.

However, some recent works (Ghorbani et al.,
2019; Subramanya et al., 2019; Zhang et al., 2020;
Ivankay et al., 2022; Sinha et al., 2021) have ob-
served explanation discrepancy when input-side
perturbation is applied to the model. One question
to this observation is what makes the explanation
discrepant? Explanations generated by a post-hoc
method (Ribeiro et al., 2016; Lundberg and Lee,
2017a; Friedman, 2001) depend on a model’s pre-
diction probabilities. If perturbations at the input
side cause model prediction probabilities to change,
post-hoc explanations may change accordingly.

In Figure 1 (a), we demonstrate a simple exam-
ple of the process that generates explanations using
a post-hoc method. The explanation is generated
depending on the probability P . In Figure 1 (b),
we demonstrate an example of the same process
with perturbation at the input side. The explanation
is generated depending on the probability P̄ . The
output probabilities in the two examples are not the
same, i.e. P ̸= P̄ . In Figure 1 (a) and (b), it is
noticeable that the feature importance score of the
same feature has changed. For instance, the fea-
ture “love” has different importance scores in the
two examples. Since feature importance scores are
inconsistent, the explanations in the two examples
are different. We call this explanation discrepancy,
which will be introduced more in subsection 2.2.

However, the prediction label in Figure 1 (a),
ŷ, and the prediction label in Figure 1 (b), ȳ, are
equal, which is ŷ = ȳ = POSITIVE. This indicates
that input side perturbations may not flip the model
prediction label, while can make output probabil-
ities change, hence further leading to explanation
discrepancy. We argue that, under input side pertur-
bations, it is difficult to identify the source causing
the explanation discrepancy. One intuitive justifica-
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Figure 1: The pipeline of a simple example that post-hoc explanation methods generate explanations with (a) no
perturbation applied. (b) perturbation applied at the input side. (c) perturbation applied at the output probabilities.

tion is that the perturbation at the input side has to
pass through both the model and the post-hoc ex-
planation method. Both the model and the post-hoc
explanation method are possible factors that result
in unstable explanations. For example, the model’s
prediction behavior may change under input side
perturbations, that is focusing on different features
to make predictions, hence resulting in the expla-
nation discrepancy (Chen and Ji, 2020, 2022). Or
the explanation method itself may be vulnerable
to input perturbations, producing discrepant expla-
nations. The instability may not be told from the
prediction results, but reflected in the explanations,
i.e., explanation discrepancy

In this paper, we propose a simple strategy to
demonstrate the potential source that causes expla-
nation discrepancy. To circumvent the potential
influence of the model on the explanations, we
design an output probability perturbation method
by slightly modifying the prediction probabilities,
as shown in Figure 1 (c). In this work, we focus
on the model-agnostic post-hoc methods, LIME
(Ribeiro et al., 2016), Kernel Shapley (Lundberg
and Lee, 2017a), and Sample Shapley (Strumbelj
and Kononenko, 2010), that explain the black-box
models. If a similar explanation discrepancy can
be observed when only output probability pertur-
bation is applied, it would suggest that post-hoc
explanation methods may be unstable because the
potential influence from the black-box model has
been blocked. Otherwise, we should not blame
post-hoc explanation methods as the source of vul-

nerability in fragile explanations (Sinha et al., 2021;
Subramanya et al., 2019).

2 Method

2.1 Background

For a text classification task, x denotes the input
text consisting of N words, x = [x(1), · · · ,x(N)],
with each component x(n) ∈ Rd representing the
n-th word embedding. We define a black-box clas-
sifier as f(·) and its output probability of a given
x on the corresponding label k is P (y = k | x) =
fk(x), where k ∈ {1, . . . , C} and C is the total
number of label classes.

To explain a black-box model’s prediction ŷ =
f(x), a class of post-hoc explanation methods ap-
proximate the model locally via additive feature
attributions (Lundberg and Lee, 2017b; Ribeiro
et al., 2016; Shrikumar et al., 2017). Specifically,
these algorithms demonstrate the relationship be-
tween the input text and the prediction result by
evaluating the contribution of each input feature to
the model prediction result. These methods would
assign a feature importance score to each input fea-
ture to represent its contribution to the prediction.
We use LIME (Ribeiro et al., 2016) as an example.

Example: Post-hoc Explanation Method, LIME.
It first sub-samples words from the input, x, to
form a list of pseudo examples {zL

j=1}, and then
the contributions of input features are estimated
by a linear approximation fŷ(r) ≈ gŷ(r

′), where
r ∈ {x, zL

j=1}, gŷ(r) = wT
ŷ r

′, and r′ is a simple
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representation of r, e.g. bag-of-words represen-
tation. The weights {w(n)

ŷ } represent importance
scores of input features {x(n)}. Let I(x, ŷ, P ) de-
note the explanation for the model prediction on
x, where ŷ is the predicted label and P represents
output probabilities.

2.2 Explanation Discrepancy

As mentioned in the previous section, the expla-
nation discrepancy may happen when input pertur-
bations are applied to the model. Let I(x, ŷ, P )
and I(x̄, ȳ, P̄ ) denote the explanation to the model
prediction based on the original input x and the
perturbed input x̄ respectively, where x̄ = x+ ε,
and ε is the perturbation at input. Similarly, we
define I(x, ỹ, P̃ ) as the explanation to the pre-
diction based on the perturbed output probability
P̃ = P + ε′, where ε′ is the perturbation on the
output probability. Note that when ε and ε′ are
small, the model prediction stay the same, which is
ŷ = ȳ = ỹ. The explanation discrepancy between
I(x̄, ȳ, P̄ ) and I(x, ŷ, P ) is denoted as δinput, and
the discrepancy between I(x, ỹ, P̃ ) and I(x, ŷ, P )
is denoted as δoutput.

We use Figure 1 in section 1 as an example to
illustrate explanation discrepancy in details. The
explanation, I(x, ŷ, P ), in Figure 1 (a) is “Love",
“Classical", “I" and “Music", in the descending
order of importance scores. The explanation,
I(x̄, ȳ, P̄ ), in Figure 1 (b) is “Classical", “Music",
“Love", and “I", in the descending order. The expla-
nation, I(x, ŷ, P̃ ), in Figure 1 (c) is “Love", “Clas-
sical", “I" and “Music", in the descending order.
Generally, after perturbation, explanation inconsis-
tency reflects in two aspects. The first aspect is
whether the overall ranking of the features based
on their importance scores in the explanation re-
mains the same. For example, “Love" ranks the
first in the explanation in Figure 1 (a), while drops
to the third in the explanation in Figure 1 (b). The
discrepancy is denoted as δinput. The second as-
pect is whether the top K important features in the
explanation are consistent. For example, if K = 2,
the first two important words in Figure 1 (a) are
“Love" and “Classical", while those in Figure 1 (b)
are “Classical" and “Music". The difference can
also be denoted as δinput mentioned above. Simi-
larly, the same aspect of explanation discrepancy
in Figure 1 (a) and Figure 1 (c) can be denoted as
δoutput.

2.3 Output Probability Perturbation Method
As mentioned in section 1, the limitation of input
perturbation methods is the difficulty in identifying
the primary source that causes explanation discrep-
ancy. Motivated by this, we propose the output
probability perturbation method to circumvent the
influence of black-box models.

Specifically, given an example x, we add a
small perturbation to the model output probabil-
ities {P (y = k | x) + ε′y=k}Ck=1. To guarantee
the modified {P (y = k | x) + ε′y=k}Ck=1 are still
legitimate probabilities, we further normalize them
as

P̃ (y = k | x) =
P (y = k | x) + ε′y=k∑C

i=1{P (y = i | x) + ε′y=i}
(1)

The explanation in the case with output probability
perturbation is computed based on the output prob-
ability P̃ (y = ŷ | x). The proposed method well
suits the motivation of investigating the source that
causes explanation discrepancy. The main reason
is that, unlike perturbation applied at the input side,
the proposed method avoids the potential effects of
the model’s vulnerability on post-hoc explanations.
We use LIME (Ribeiro et al., 2016) as an example
to demonstrate the proposed method.

Example: Output probability perturbation in
LIME algorithm. As denoted in subsection 2.1,
r′ is the bag-of-words representation of the origi-
nal input text, x. A simplified version 1 of LIME
algorithm is equivalent to finding a solution of the
following linear equation:

wT
ŷ r

′ = p̃ŷ (2)

where p̃ŷ = [P̃ (y = ŷ | x), P̃ (y = ŷ |
z1), . . . , P̃ (y = ŷ | zL)]T are the perturbed proba-
bilities on the label ŷ, and wT

ŷ is the weight vector,
where each element measures the contribution of
an input word to the prediction ŷ. A typical ex-
planation from LIME consists of top important
words according to wŷ. Essentially, the proposed
output perturbation is similar to the perturbation
analysis in linear systems (Golub and Van Loan,
2013), which aims to identify the stability of these
systems. Despite the simple formulation in Equa-
tion 2, a similar linear system can also be used
to explain the Shapley-based explanation methods

1Without the example weight computed from a kernel func-
tion and the regularization term of explanation complexity.
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(e.g., Sample Shapley (Strumbelj and Kononenko,
2010)).

3 Experiment

3.1 Experiment Setup

Datasets. We adopt four text classification
datasets: IMDB movie reviews dataset (Maas et al.,
2011, IMDB), AG’s news dataset (Zhang et al.,
2015, AG’s News), Stanford Sentiment Treebank
dataset with binary labels (Socher et al., 2013,
SST-2), and 6-class questions classification dataset
TREC (Li and Roth, 2002, TREC). The summary
statistics of datasets are shown in Table 1.

Models. We apply three neural network models,
Convolutional Neural Network (Kim, 2014, CNN),
Long Short Term Memory Network (Hochreiter
and Schmidhuber, 1997, LSTM), and Bidirectional
Encoder Representations from Transformers (De-
vlin et al., 2018, BERT).

The principle of CNN model is based on infor-
mation processing in the visual system of humans.
The core characteristics are that it can efficiently
decrease the dimension of input, and it can effi-
ciently retain important features of the input (Kim,
2014).

LSTM model is one advanced RNN model. Un-
like the architecture of a standard feedforward deep
learning neural network, it has feedback connec-
tions in the architecture, which helps to process se-
quential data (e.g., language and speech) (Hochre-
iter and Schmidhuber, 1997, LSTM).

BERT model is a Language Model (LM). In the
NLP research, the main tasks of the BERT model
are (1) Sentence pairs classification tasks and (2)
Single sentence classification tasks (Devlin et al.,
2018). In this work, we focus on the second task
while we apply the BERT model in the experiment.

The prediction performance of the three models
on the four datasets are recorded in Table 2.

Post-hoc Explanation Methods. We adopt three
post-hoc explanation methods, Local Interpretable
Model-Agnostic Explanations (Ribeiro et al., 2016,
LIME), Kernel Shapley (Lundberg and Lee, 2017a),
and Sample Shapley (Strumbelj and Kononenko,
2010). LIME, Kernel Shapley, and Sample Shapley
are additive feature attribution methods. The addi-
tive feature method provides a feature importance
score on every feature for each text input based on
the model prediction.

LIME and Kernel Shapley are two post-hoc
methods adopting a similar strategy. The first
step is to generate a set of pseudo examples and
their corresponding labels based on the black-box
model’s predictions on them (Ribeiro et al., 2016;
Lundberg and Lee, 2017a). The second step is
to train an explainable machine learning model
(eg: linear regression, LASSO) with the pseudo
examples (Ribeiro et al., 2016; Lundberg and Lee,
2017a). The difference between the LIME algo-
rithm and the Kernel Shapley algorithm is in the
way to calculate the weight of pseudo examples in
the explainable model (Molnar, 2018). LIME al-
gorithm relies on the distance between the original
example and the pseudo example (Ribeiro et al.,
2016). Kernel Shapley algorithm relies on the Shap-
ley value estimation (Lundberg and Lee, 2017a).

Sample Shapley is a post-hoc method based on
Shapley value (Shapley, 1953a), which stems from
coalitional game theory. Shapley value provides
an axiomatic solution to attribute the contribution
of each word in a fair way. However, the expo-
nential complexity of computing Shapley value
is intractable. Sampling Shapley (Strumbelj and
Kononenko, 2010) provides a solvable approxima-
tion to Shapley value via sampling.

Evaluation Metrics. In the experiment, we apply
two evaluation metrics, Kendall’s Tau order rank
correlation score, and the Top-K important words
overlap score (Chen et al., 2019; Kendall, 1938;
Ghorbani et al., 2019) to evaluate the discrepancy
between explanations (i.e., δinput and δoutput).

As illustrated in subsection 2.2, explanation dis-
crepancy can be evaluated in in two aspects. We
use Kendall’s Tau order rank correlation score to
quantify the change of the overall ranking of feature
importance scores in explanations. For example, in
Figure 1 (a) and (b), we can apply Kendall’s Tau
order rank correlation score to identify how close
the overall ranking of features in the two examples.
If the score is close to 1, then the two explanations
are similar. If the score is close to −1, then the two
explanations differ significantly. We use Top-K
important words overlap score to evaluate the dis-
crepancy on the top K features in the explanations.
This metric computes the overlap ratio among the
top K features. In this work, we set K = 5.
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Dataset C L #train #dev #test vocab threshold length
IMDB 2 268 20K 5K 25K 29571 5 250
SST-2 2 19 6920 872 1821 16190 0 50
AG’s News 4 32 114K 6K 7.6K 21838 5 50
TREC 6 10 5000 452 500 8026 0 15

Table 1: Summary statistics for the datasets where C is the number of classes, L is the average sentence length, #
counts the number of examples in train/dev/test sets, vocab is the vocab size, and the threshold is the low-frequency
threshold, and length is mini-batch sentence length.

Dataset CNN LSTM BERT
IMDB 86.30 86.60 90.80
SST-2 82.48 80.83 91.82
AG’s News 89.90 88.90 95.10
TREC 92.41 90.80 97.00

Table 2: Prediction accuracy(%) of the three neural
network models (CNN, LSTM and BERT) on the four
datasets (IMDB, SST-2, AG’s News and TREC).

3.2 Explanation Discrepancy Comparison
Experiment

To explore the primary source causing fragile ex-
planations, we conduct a comparison experiment to
evaluate and compare between explanation discrep-
ancy δinput, and explanation discrepancy δoutput.
The definition of δinput, and δoutput are intro-
duced in subsection 2.2. δinput denotes the dis-
crepancy between the explanation generated by the
black-box model with no perturbation, I(x, ŷ, P ),
and the explanation generated by the black-box
model with perturbation at the input, I(x̄, ŷ, P̄ ).
While δoutput denotes the discrepancy of I(x, ŷ, P )
and the explanation generated by the black-box
model with perturbation at the output probability,
I(x̄, ŷ, P̃ ).

In this experiment, for output probability per-
turbation, we directly add random noise to the
model output probabilities. For comparison, we
add the noise to word embeddings for input pertur-
bations (Liu et al., 2020). Both input side perturba-
tion and output probability perturbation are applied
with noise sampled from a Gaussian distribution,
N (0, σ2). We apply Gaussian noise because it is
easy to control the perturbation level by modifying
the variance of the Gaussian distribution σ2. In
experiments, we applied five different perturbation
levels from “0” to “4”. “0” means the slightest per-
turbation level, zero perturbation, while “4” repre-
sents the strongest perturbation level. The specific
value of each perturbation level is shown in Table 3.

Note that for each level, the input side perturbations
and the output probability perturbations are differ-
ent because we select different perturbations for
the input side and the output probability to reach
a similar accuracy at each level. If the model’s
accuracy is not close at each level, it is difficult to
evaluate the results.

Perturbation Source Level σ2

Input Side (σ2
input) 0 0

1 0.05
2 0.1
3 0.15
4 0.2

Output Probability (σ2
output) 0 0

1 0.25
2 0.5
3 0.75
4 1

Table 3: Perturbation levels applied to the input and
output respectively.

3.3 Results and Discussion
Figure 2 shows the results of the IMDB dataset.
Due to the page limit, full results of other datasets
are shown in Figure 4, Figure 5 and Figure 6 in Ap-
pendix A, which have similar tendencies. Kendall’s
Tau order rank correlation score plots are shown in
Figure 2 (a), (b) and (c). Top-K important words
overlap score plots are shown in Figure 2 (d), (e)
and (f). Figure 2 (a) and (d) show the results of
the LIME method. Figure 2 (b) and (e) show the
results of the Kernel Shapley method. Figure 2
(c) and (f) show the results of the Sample Shapley
method.

Kendall’s Tau order rank correlation score eval-
uation results. Kendall’s Tau order rank correla-
tion score results indirectly illustrate the stability of
post-hoc explanation methods. Furthermore, previ-
ous observation on the explanation difference can
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(a) (b) (c)

(d) (e) (f)

Figure 2: Comparison experiment results on the IMDB dataset; (a) and (d) demonstrate results using LIME method;
(b) and (e) demonstrate results using Kernel Sharply method; (c) and (f) demonstrate results using Sample Sharply
method.

be attributed to the potential influence caused by
the black-box model. In Figure 2 (a), (b) and (c),
the large gap between δinput and δoutput is consis-
tent across all three post-hoc explanation methods,
LIME, Kernel Shapley and Sample Shapley. For
output probability perturbations, it is noticeable
that the values of Kendall’s Tau order rank correla-
tion scores remain the same with the perturbation
level increasing from “0” to “4". This indicates that
the overall ranking of feature importance scores are
stable under output perturbations. Furthermore, the
results suggest that for a given input, if x and pre-
diction results stay unchanged, ŷ = ỹ, the only
perturbation ε′ at output probability is unlikely to
influence explanations generated by the post-hoc
methods. In other words, the explanation discrep-
ancy observed in the previous study (Ivankay et al.,
2022; Sinha et al., 2021) is unlikely caused by the
post-hoc methods. Meanwhile, for the baseline
results (perturbation applied at the input), it is no-
tifiable that the values of Kendall’s Tau order rank
correlation scores decrease obviously with the in-
crease of input perturbation intensity levels. This
indicates that the black-box model is vulnerable to

input perturbations, which causes fragile explana-
tions. Based on the observations, we claim that the
black-box model is more likely to be the primary
source that results in fragile explanations.

Top-K word importance score evaluation re-
sults. Top-K word importance score evaluation
shows the same result: the black-box model is the
primary source causing explanation discrepancy.
In Figure 2 (d), (e) and (f), δinput against δoutput
display an obvious discrepancy across the three
post-hoc explanation methods. For output proba-
bility perturbations, δoutput shows no change in the
overlap among the top K important words. This
indicates that, for the top five important features
in the explanation of each corresponding predic-
tion result, output probability perturbations will not
cause any difference. The results under this met-
ric also illustrate that the black-box model is more
likely to cause fragile explanations than explana-
tion methods themselves.

3.4 Further Analysis on LIME Algorithm

According to the previous results, we have a conclu-
sion that post-hoc explanation methods are stable.
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We further analyze the stability of the explanation
algorithms. We use the LIME algorithm (Ribeiro
et al., 2016) as an example.

L(fŷ(r), gŷ(r
′), π) =

∑

r,r′∈R
π(fŷ(r)− gŷ(r

′))

(3)
Equation 3 is definition of the loss function in

LIME algorithm (Ribeiro et al., 2016). In the loss
function, πgŷ(r′) is denoted the kernel calculation
function of the algorithm. r′ represents the pseudo
example based on the original example, r. gŷ(r′)
represents the linear local explainable model on the
pseudo example, r′. Here, we use a general linear
model representation to represent the explainable
model, gŷ(r) = wT

ŷ r
′. wT

ŷ is the weight function
of the linear model and it is the importance feature
score calculation function as well. Equation 4 is the
kernel calculation function of the LIME algorithm
after expanding.

G = πgŷ(r) = πwT
ŷ r

′ (4)

The form of the kernel calculation function can
be interpreted as a general linear function, Ax = b.
In the linear function, the condition number, (κ), is
applied to evaluate how sensitive the linear function
is due to a small change at the input and reflects
in its output (Belsley et al., 2005). If the condition
number, (κ), which is the largest eigenvalue in the
matrix A divided by the smallest eigenvalue in the
matrix A, is large, the solution x would change
rapidly by a slight difference in b, which would
cause sensitivity of the solution to the slight error
in the input (Goodfellow et al., 2016). In Equa-
tion 4, πr′ can be considered as the matrix A, and
the feature importance score function wT

ŷ can be
considered as the solution x. If πr′ is a stable lin-
ear system, the feature importance score function
wT

ŷ would be unlikely sensitive to a minor change
at the linear system input side, and the correspond-
ing post-hoc explanation method is stable. The
form of the kernel calculation function can be inter-
preted as a general linear function, Ax = b. In the
linear function, the condition number, (κ), is ap-
plied to evaluate how sensitive the linear function
is due to a small change at the input and reflects
in its output (Belsley et al., 2005). If the condition
number, (κ), which is the largest eigenvalue in the
matrix A divided by the smallest eigenvalue in the
matrix A, is large, the solution x would change
rapidly by a slight difference in b, which would

cause sensitivity of the solution to the slight error
in the input (Goodfellow et al., 2016). In Equa-
tion 4, πr′ can be considered as the matrix A, and
the feature importance score function vecwT

ŷ can
be considered as the solution r. If πr′ is a stable
linear system, the feature importance score func-
tion wT

ŷ would be unlikely sensitive to a minor
change at the linear system input side, and the cor-
responding post-hoc explanation method is stable.
Since the kernel function is a pure numerical step
without semantics involved. We conduct a simula-
tion experiment to explore the stability of the LIME
algorithm (Ribeiro et al., 2016).

Simulation Experiment and Results In the sim-
ulation experiment, the pseudo example, r′, is a
matrix with the size of sub-sampling size, m, mul-
tiple with the length of a sentence, l. We select
m = 200, which is the actual sample size value
we applied in the comparison experiment. For the
sentence length, first, we simulate the case when
sentence length is fixed, that is l = 20. Then,
to compare condition number distribution when
sentence length is different, we apply two more
cases, that are l = 30, and l = 40. For each
length, we simulate it for 500 iterations. For π, it is
the distance between the original input to the sub-
sampling based on the original input in the LIME
algorithm (Ribeiro et al., 2016). In the simulation
experiment, we apply cosine distance to represent
the value of π.

Total iteration number κ ∈ [5, 6) κ ∈ [6, 7)

500 392 108

Table 4: Condition number (κ) distribution when l = 20

Figure 3: Simulation Experiment Result.
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In Table 4, the result of the simulation experi-
ment when the sentence length is fixed, l = 20,
demonstrates that the majority of the condition
number κ of the matrix πr′ is lower than 7. In
Goldstein’s work, it suggests that the condition
number of a stable or a well-conditioning matrix
should be lower than 30 (Goldstein, 1993). It
means that the feature importance score function,
W , is less likely influenced by a small perturbation
involved, which is also reflected in the real dataset
results in the comparison experiment in subsec-
tion 3.3. In Figure 3, the result of the simulation ex-
periment when sentence lengths are different shows
that when the length of the sentence increases, the
condition number κ of the matrix πr′ increases
with a tiny amplitude. The majority of the condi-
tion number κ of the matrix is lower than 13 when
the length is from 20 to 40. Although the result
demonstrates that the condition number κ would
increase with sentence length increasing, the in-
creasing amplitude is small and the majority of the
condition number is lower than the threshold num-
ber. The result suggests that the matrix πr′ in the
LIME algorithm can remain a small condition num-
ber, which makes the linear system relatively stable.
In other words, the LIME algorithm (Ribeiro et al.,
2016) is a relatively stable post-hoc explanation
method.

4 Previous Works

Post-hoc Explanation Methods Most works fo-
cus on explaining neural network models in a post-
hoc manner, especially generating a local expla-
nation for each model prediction. The white-box
explanation methods, such as gradient-based expla-
nations (Hechtlinger, 2016), and attention-based
explanations (Ghaeini et al., 2018), either require
additional information (e.g. gradients) from the
model or incur much debates regarding their faith-
fulness to model predictions (Jain and Wallace,
2019).

Another line of work focuses on explaining
black-box models in the model-agnostic way. Li
et al. (2016) proposed a perturbation-based expla-
nation method, Leave-one-out, that attributes fea-
ture importance to model predictions by erasing
input features one by one. Ribeiro et al. (2016)
proposed to estimate feature contributions locally
via linear approximation based on pseudo exam-
ples. Some other works proposed the variants of
the Shapley value (Shapley, 1953b) to measure

feature importance, such as the Sample Shapley
method (Strumbelj and Kononenko, 2010), the Ker-
nel Shapley method (Lundberg and Lee, 2017a),
and the L/C-Shapley method(Chen et al., 2018).

Model robustness Recent works have shown the
vulnerability of model due to adversarial attacks
(Szegedy et al., 2013; Goodfellow et al., 2014;
Zhao et al., 2017). Some adversarial examples are
similar to original examples but can quickly flip
model predictions, which causes concern on model
robustness (Jia et al., 2019). In the text domain, a
common way to generate adversarial examples is
by heuristically manipulating the input text, such
as replacing words with their synonyms (Alzantot
et al., 2018; Ren et al., 2019; Jin et al., 2020), mis-
spelling words (Li et al., 2018; Gao et al., 2018),
inserting/removing words (Liang et al., 2017), or
concatenating triggers (Wallace et al., 2019).

Explanation Robustness Previous work ex-
plored explanation robustness by either perturb-
ing the inputs (Ghorbani et al., 2019; Subramanya
et al., 2019; Zhang et al., 2020; Heo et al., 2019) or
manipulating the model (Wang et al., 2020; Slack
et al., 2020; Zafar et al., 2021). For example,
Slack’s group fooled post-hoc explanation methods
by hiding the bias for black-box models based on
the proposed novel scaffolding technique (Slack
et al., 2020). However, all of these works cannot
disentangle the sources that cause fragile explana-
tion. Differently, the proposed method mitigates
the influence of model to the explanation by per-
turbing model outputs.

5 Conclusion

In this work, our main contribution is to identify
the primary source of fragile explanation, where we
propose an output probability perturbation method.
With the help of this proposed method, observation
results can illustrate a conclusion that the primary
potential source that caused fragile explanations in
the previous studies is the black-box model itself,
which also illustrate that some limitations of prior
methods. Furthermore, in subsection 3.4, we ana-
lyze the kernel calculation inside the LIME algo-
rithm (Ribeiro et al., 2016). We apply the condition
number of the matrix and simulation experiments
to demonstrate that the kernel calculation matrix
inside LIME has a low condition number. This
result further suggests the stability of the LIME
algorithm.
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A Figures of Comparison Experiments
Result on SST-2, AG’s News and TREC
Dataset

In the section, we include comparison experiments
results of the SST-2 dataset in Figure 4, the AG’s
News dataset in Figure 5, and the TREC dataset in
Figure 6.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Comparison experiment results on the SST-2 dataset; (a) and (d) demonstrate results using LIME method;
(b) and (e) demonstrate results using Kernel Sharply method; (c) and (f) demonstrate results using Sample Sharply
method.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Comparison experiment results on the AG’s News dataset; (a) and (d) demonstrate results using LIME
method; (b) and (e) demonstrate results using Kernel Sharply method; (c) and (f) demonstrate results using Sample
Sharply method.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Comparison experiment results on the TREC dataset; (a) and (d) demonstrate results using LIME method;
(b) and (e) demonstrate results using Kernel Sharply method; (c) and (f) demonstrate results using Sample Sharply
method.
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