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Abstract 

Despite rapid advancement in the field of 

Constrained Natural Language Generation, 

little time has been spent on exploring the 

potential of language models which have 

had their vocabularies lexically, 

semantically, and/or phonetically 

constrained. We find that most language 

models generate compelling text even 

under significant constraints. We present a 

simple and universally applicable 

technique for modifying the output of a 

language model by compositionally 

applying filter functions to the language 

models vocabulary before a unit of text is 

generated. This approach is plug-and-play 

and requires no modification to the model. 

To showcase the value of this technique, we 

present an easy to use AI writing assistant 

called “Constrained Text Generation 

Studio” (CTGS). CTGS allows users to 

generate or choose from text with any 

combination of a wide variety of 

constraints, such as banning a particular 

letter, forcing the generated words to have 

a certain number of syllables, and/or 

forcing the words to be partial anagrams of 

another word. We introduce a novel dataset 

of prose that omits the letter “e”. We show 

that our method results in strictly superior 

performance compared to fine-tuning alone 

on this dataset. We also present a 

Huggingface “space” web-app presenting 

this technique called Gadsby. The code is 

available to the public here: 

https://github.com/Hellisotherpeople/Cons

trained-Text-Generation-Studio 

1 Introduction 

Constrained writing is a literary approach in which 

the writer decides to impose patterns, constraints, 

or conditions on their text. The most obvious 

example of this application is within poetry – but 

many other communities of writers also find 

imposing constraints on themselves to be 

enjoyable. We can divide constraints into two 

types, soft-constraints and hard-constraints.  

    Soft constraints are the kind that are fuzzy, e.g. 

deciding to write in a certain style. Soft constraints 

are almost exclusively applied at the sequence 

level, rather than being applied directly on each 

token. Hard constraints are concrete lexical, 

semantic, or phonetic requirements about the 

contents of a token or sequence. In this paper, we 

are presenting a system that applied token level 

hard-constraints to large-scale language models.  

    One notable group who create hard-constrained 

texts are the Oulipo (short for Ouvroir de littérature 

potentielle; roughly translated as the “workshop of 

potential literature”) writing collective. Oulipo 

affiliated writers have produced a prolific amount 

of constrained literature since the 1960s. Oulipos 

founder has described the writers within the 

collective as "rats who construct the labyrinth from 

which they plan to escape".  

    One does not need to be a rodent to find 

“recreational linguistics” useful. Any suitor who 

has pledged their affection in print can attest to how 

difficult it can be to write good love poetry; and 

being able to generate rhyming text that also has 

the lengths of consecutive words matching the 

digits of pi is sure to swoon all but the most frigid 

of mathematicians. 

    Natural Language Generation has advanced at a 

breakneck pace. As models have scaled up, their 
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performance on a wide variety of tasks has 

improved. More recent work shows that 

sufficiently large models such as the “Pathways 

Language Model” (Chowdhery et al., 2022) unlock 

new capabilities for common sense reasoning. The 

probabilistic nature of language models makes 

their impressive performance particularly 

intriguing.  

    Ultimately, all language models involve some 

form of sampling from their vocabulary of all 

possible tokens that they could generate. In this 

paper, we explore the idea of adding arbitrarily 

compositional lexical, semantic, and/or phonetic 

filters to the crucial step of a language model 

sampling from its vocabulary during its decoding 

phase. Among other things, we observe that 

language models can remain coherent even with a 

remarkable amount of filters applied to their 

vocabulary. We thus find that it is perfectly 

appropriate to expect coherent output from a model 

like GPT-2 (Radford et al., 2019), when, for 

instance, its vocabulary is filtered to ban any word 

with the letter “e”, the letter “a” is forced to appear, 

and the length of the token must be longer than 3.  

    In this paper, we introduce two systems which 

take advantage of this constrained vocabulary 

technique: An AI writing assistant called 

Constrained Text Generation Studio (CTGS) and a 

Huggingface “space” web-app called “Gadsby”1.   

   Constrained Text Generation Studio is a GUI tool 

for recreational linguists, poets, creative writers, 

and/or researchers to use and study the ability of 

large-scale language models to recommend 

relevant text in nearly any situation. After 

                                                           
1 Available here: 
https://huggingface.co/spaces/Hellisotherpeople/Ga
dsby 

specifying and downloading one of the thousands 

of language models made available on the 

Huggingface model hub, users can use CTGS to 

specify a list of constraints or “filters” that the 

vocabulary of the language model must pass 

through before it can be sampled from. After any 

combination of the filters are specified, users can 

either use traditional decoding methods to generate 

tokens from the constrained vocabulary 

automatically, or they can manually select their 

continuation from the list of valid tokens. CTGS 

was created with the idea of being “like Photoshop 

but for Constrained Text Generation”.  

    Gadsby is a Huggingface hosted webapp which 

demonstrates the ability for language models to 

generate coherent text with several different pre-

selected combinations of filters. Gadsby was 

named after one the most famous constrained 

works of fiction, which is a 270 page book written 

without the letter E. Gadsby is missing features that 

CTGS has, including composability of filters, 

optional human selection of continuations, and text 

transforms – but it includes filter pre-sets to 

showcase the robustness of language models to 

constraints. The most notable of these pre-sets is 

called “E-Prime” 2 , which filters the specified 

language models vocabulary to avoid any form of 

the verb “to be”.  

2 Prior Work 

We are not the first to explore Constrained Natural 

Language Generation with Language Models. 

Probably the closest prior work to our own comes 

2 The wikipedia article about this is fascinating: 
https://en.wikipedia.org/wiki/E-Prime 

 

Figure 1: A use-case diagram of the algorithm  
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from Pascual et al. (2021). They propose a single 

plug-and-play semantic filter which shifts the 

sampling probabilities of a language models 

vocabulary towards a user defined keyword or set 

of keywords. CTGS instead offers a rich array of 

compositional lexical, phonetic, and semantic 

filters, and it preserves the original language 

models sampling probabilities with the exception 

of the filtered out tokens, which are banned.  

    Swanson et al. (2014) show that language 

models using Constrained Beam Search can 

effectively generate text with the constraint of 

either banning or requiring certain words to appear 

in a sequence. Notably, the transformers library 

from Huggingface recently integrated this 

functionality 3 . Constrained Beam Search is 

effective for translation and other sequence-to-

sequence tasks, but it makes it impossible for the 

language model to assist humans on a per-token 

basis. CTGS adopts an optional human-in-the-loop 

approach where the user can decide which token to 

choose following the listed constraints at each step, 

rather than necessarily relying on sampling. Given 

the inherit creativity required for Constrained 

Writing, using language models for inspiration 

rather than blindly generating with them is 

uniquely helpful for recreational linguists.  

    Kumar et al. (2021) propose a method for 

Controlled Text Generation by formulating it as an 

optimization problem given a list of constraints and 

using gradient descent to maximize the log 

probability of the language model as well as the 

constraint objectives. The constraints that they 

provide are exclusively sequence level. By 

contrast, CTGS’s filters are at the token level and 

are correspondingly much more appropriate for 

Oulipo or Poetry. Their method also requires a 

potentially lengthy optimization process. 

    Lu et al. (2021) propose a reinforcement learning 

based technique for generating sequences with 

conceptual constraints. This method requires 

training and is not applicable for hard lexical or 

phonetic constraints. 

    Zhang et al. (2020) developed a technique for 

solving the problem of hard-constraint generation. 

They propose to pre-train a model by progressively 

inserting tokens between existing tokens in a 

parallel manner. They introduce a large scale 

                                                           
3 An excellent blog post about this can be found here: 
https://huggingface.co/blog/constrained-beam-
search 

language model pre-trained this way and which is 

fine-tuned on hard-constrained tasks called 

POINTER. Their work only looks at the constraint 

of requiring certain words to appear in a sequence. 

Our work explores a wide variety of constraints and 

requires no training.   

    Other work related to constrained text generation 

which explores the potential of global constraint 

satisfaction at the sequence level comes from 

Mireshghallah et al. (2022). Surrogate models, 

such as BertScore, enforce these global constraints. 

Our writing assistant enforces constraints at the 

local level, and allows human intervention at any 

point.  

    Some intriguing work from the Task Oriented 

Dialogue community has parallels with our work. 

Balakrishnan et al. (2019) showcase how 

constrained decoding can be obtained by controlled 

modification of the model representation. They 

find that this technique improves semantic 

correctness as measured on the weather dataset.  

3 Implementation Details 

In this section, we explore the quirks, caveats, and 

details of the implementation of our technique 

within CTGS.  

3.1 Filters 

To enable a filter, a user checks the corresponding 

box, which will cause a larger group of settings to 

become visible. These settings are specific to each 

individual filter. After the relevant settings are 

specified, the button at the bottom of the settings 

enables the filter, and a list of filters which are 

enabled is shown at the top of the filters window.  

    CTGS at the time of writing includes 21 filters. 

Many of these filters are lexical, such as constraints 

which ban or force particular letters. Other filters 

are distance based, such as the semantic filter, 

which uses an auxiliary fasttext (Bojanowski, et al., 

2016) model to remove language model 

vocabulary tokens which don’t meet or exceed the 

specified semantic similarity threshold with a user 

supplied word.  

Probably the most interesting of the included 

filters are phonetic in nature. CTGS includes filters 

for syllable count, meter, rhyme, and phonetic 

matching. CTGS achieves this feat by using the the 
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Carnegie Mellon Pronouncing Dictionary 

(CMUdict) 4 . The “double metaphone” phonetic 

algorithm is used for direct phonetic matching. 

These sorts of filters unlock the potential for poetry 

generation by large-scale language models since 

the rhyme, syllable, or meter constraints inherit to 

poetry are directly forced within the language 

models vocabulary.  

3.2 Tokenization 

Most of the constraints have the additional 

unpleasant side-effect of subverting the intention 

and value of subword tokenization schemes. This 

is because the filters assume that a language model 

generates its words all in one-step. Subword 

tokenization became the de facto default for large 

language models because increasing the 

vocabulary size of a language model dramatically 

increases the computational and memory footprint 

of the model. As the size and sophistication of 

language models has gone up, their vocabulary 

sizes have stayed constant5.  This is frustrating for 

our technique, which naively assumes that a filter 

can be applied to a subword – an assumption which 

is often not true. 

Unfortunately, most Language Models don’t 

“signpost” as to whether they are generating a full 

word or a subword, requiring heuristic techniques 

to be used if one wanted to construct a “subword 

                                                           
4 Available here: 
https://github.com/cmusphinx/cmudict 

aware” filter. Even more startlingly, we observe 

that language models occasionally generate 

functionally the same continuation with subwords 

that they could have generated with direct words 

found within the vocabulary. Many of the filters in 

CTGS will absolutely cripple a language models 

ability to generate rare words which would be 

vectorized into subwords by the language models 

tokenizer. CTGS in its current form thrives when it 

is using a language model with a huge vocabulary.  

Luckily, modern language models with huge 

vocabularies exists. One of these is “Transformer-

XL”, which showcased the value of using a word-

tokenizer and an autoregressive architecture for 

generating coherent text (Dai et al., 2019). Its 

word-tokenizer doesn’t leverage sub words, and 

thus these models do not succumb into the 

previously discussed issues. The default pre-

trained models that Dai et al made available have a 

vocabulary size of 267735 tokens. That’s a 5.32x 

increase in size over GPT-3! Unfortunately, one 

must also incur a significant penalty in memory and 

compute costs for this privilege. 

4 Dataset without the “e” 

One of the issues that large language models 

present for constrained writers is that even when 

heavily fine-tuned on a particular dataset, they 

5 E.g. GPT, GPT-2, and GPT-3 all have a vocab size of 
50257 words. 

Figure 2: CTGS with the "Distilled-GPT2” (distilgpt2) model loaded. Users can right click within the 

textbox for a list of all possible continuations matching the currently selected filters 

Users can right click anywhere within the text box to get a    
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frequently ignore their constraints. For example, 

poetry models that were fine-tuned on the works of 

William Shakespeare frequently stumble and fail to 

maintain rhyme or meter.6 We show that language 

models, which are fine-tuned even on the simple 

lexical constraint of omitting the letter “e”, still 

occasionally ignore their constraints. In fact, even 

when these models are overtrained to an absurd 

degree, complete adherence to these constraints is 

unlikely.  

Such behavior motivates the creation of datasets 

which include some forms of hard lexical, 

semantic, or phonetic constraints. By doing so, we 

can measure how often language models ignore 

them, and more importantly, we can show that this 

method of filtering out these tokens before the 

generation step leads to strictly better performance 

and eliminates these kinds of errors. 

We present a dataset, called “Lipogram-e”, 

which consists of all known complete book-length 

English works which do not use the letter “e”. This 

dataset includes all of Gadsby by Ernest Vincent 

Wright, all of A Void by Georges Perec, and almost 

all of Eunoia by Christian Bok 7 . We name it 

“Lipogram-e” because a lipogram is a text where 

the author omits one or more letters from the 

alphabet.  

While it may be possible to produce a dataset 

without the letter “e” by simply computationally 

looking through an existing large scale dataset for 

sentences which match that constraint, doing so 

would result in jumbled and incoherent training 

examples, with little relation to each other. By 

contrast, books and prose written with constraints 

have clear, coherent narratives. We chose the 

constraint of banning “e” because it is extremely 

easy to computationally verify and because there is 

no potential for error from the filter function.  

5 Experiment 

We design the experiment to measure how often a 

language model makes constraint-based mistakes 

on the Lipogram-e dataset. We look at the 

perplexity and the ignored constraint error rate of 

GPT-2-medium. We choose GPT-2-medium 

because of its relatively well-understood fine-

tunability.  We compare the untrained GPT-2 model 

to the regularly fine-tuned model, and the over-

fine-tuned model. We show that in all instances, 

                                                           
6 An observation that has also been made by others: 
see here: https://www.gwern.net/GPT-2 

applying the constraint to ban the letter “e” from 

the vocabulary of these models results in both 

improved perplexity, as well as zero ignored 

constraint errors.  

6 Discussion and Observations 

Language models that have had their vocabularies 

filtered act significantly differently from unaltered 

models. Because the filters remove significant 

amounts of entries with high probability of being 

generated, models are more likely to behave 

undesirably. Some of the undesirable behavior 

observed included models generating total 

gibberish, generating repetitive text, generating 

potentially personally identifying information, 

generating profanity, and generating computer 

code. The more tokens which are filtered, and the 

higher their probability, the more likely it is that 

models will end up in these degenerate states. We 

hope that this paper motivates further and more 

exhaustive analysis of the vocabularies of language 

models and in particular, what properties they have 

when altered.  

Filtering the vocabularies of language models 

opens up unique possibilities for adversarial 

machine learning. Any model which is exposing its 

full probability distribution before decoding could 

potentially be “attacked” by a sophisticated actor 

who has figured out what they “don’t want” the 

7 Eunoia is a work where each chapter only uses one 
vowel. We omit the chapter that uses the vowel “e” 

Model Perplexity 

on test split 

Ignored 

Constraint 

Error % 

GPT-2 237.37 

 

28.2 

 

GPT-2 with  

constraint filter 

211.53 0 

GPT-2 fine-tuned 

for 5 epochs 

78.24 

 
0.5 

 

GPT-2 fine-tuned 

for 5 epochs with 

constraint filter 

77.99 0 

GPT-2 fine-tuned 

for 20 epochs 
75.58 

 

0.3 

 

GPT-2 fine-tuned 

for 20 epochs 

with constraint 

filter 

75.10 0 

Table 1: Results of the experiment on the 

Lipogram-e dataset 
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model to generate. This could dramatically reduce 

the number of generations needed to leak specific 

information.  

Similar techniques for filtering the output of all 

generative models could be explored in the future. 

Highly sophisticated text-to-image models like 

DALL-E from Ramesh et al. (2021) and Stable-

Diffusion from Ho and Salimans (2021) might 

have interesting and unique behavior if pixel based 

filters that are analogous to our technique can be 

developed.  

It would be extremely interesting to see how this 

technique will work with large scale language 

models such as OpenAIs GPT-3 or Huggingfaces 

BLOOM model. It is likely to make this technique 

extremely sophisticated, but large scale models 

frequently are not released to the public and their 

vocabularies probability distributions are not 

always exposed to the end user.  

7 Final Thoughts and Conclusion 

In this paper, we introduced the AI constrained 

writing assistant called CTGS, explained its 

features and rationale, and mused about its 

potential use cases. We also introduced a 

Huggingface hosted webapp which demonstrates 

the plug-and-play nature of constraining the 

vocabulary of a language model. We introduced a 

dataset of English books which do not contain the 

letter “e” called “Lipogram-e”. We showed that our 

technique results in lower perplexity and zero 

ignored constraint errors in a variety of 

circumstances. Finally, we discussed the unique 

behaviors that models with constraints have.   

    We also hope to use this paper to serve as a call 

to action for the language modeling community to 

not abandon research into word level tokenizers 

and training models using them. If that’s not 

possible, at least some form of “signposting” 

should be built into subsequently trained models 

using potentially a new subword tokenization 

scheme designed for this purpose. We hope this 

paper motivates future work on word-level 

tokenization, and on language models trained with 

extremely large vocabularies.  
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