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Abstract

We propose a Korean multimodal dialogue sys-
tem targeting emotion-based empathetic dia-
logues because most research in this field has
been conducted in a few languages such as En-
glish and Japanese and in certain circumstances.
Our dialogue system consists of an emotion
detector, an empathetic response generator, a
monitoring interface, a voice activity detector,
a speech recognizer, a speech synthesizer, a
gesture classification, and several controllers to
provide both multimodality and empathy dur-
ing a conversation between a human and a ma-
chine. For comparisons across visual influence
on users, our dialogue system contains two ver-
sions of the user interface, a cat face-based user
interface and an avatar-based user interface. We
evaluated our dialogue system by investigat-
ing the dialogues in text and the average mean
opinion scores under three different visual con-
ditions, no visual, the cat face-based, and the
avatar-based expressions. The experimental re-
sults stand for the importance of adequate vi-
sual expressions according to user utterances.

1 Introduction

As dialogue systems for human-machine conver-
sations have attracted attention from the public,
various multimodal dialogue systems with the pur-
pose of healthcare (Wada and Shibata, 2007), em-
pathetic conversation (Ishii et al., 2021) or multi-
party attentive listening (Inoue et al., 2021b) have
been recently introduced because multimodality
makes conversations more entertaining (Pollmann
et al., 2020). Most research in this field has been
conducted by few research groups in industry or
university because of the complicated architecture
inherent in multimodal dialogue systems to con-
trol multimodal recognition or representation. Con-
sequently, most multimodal dialogue systems are
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limited to a few languages such as English and
Japanese.

Empathy is also the main factor for more human-
ized conversation (Zech and Rimé, 2005) along
with multimodality. Researches on empathetic dia-
logues (Lin et al., 2020; Zheng et al., 2021; Zhong
et al., 2020; Li et al., 2021; Kim et al., 2021a;
Sabour et al., 2022) are also focused on a few lan-
guages from a lack of empathetic dialogue datasets.
Although a Korean empathetic dataset (Yang et al.,
2020) and a Korean empathetic dialogue genera-
tion model (Jang et al., 2022) have been recently
published, a Korean empathetic dialogue system
supporting multimodality has not been studied.

This paper makes the following contributions:

1. We propose an emotion-based Korean multi-
modal empathetic dialogue system composed
of an emotion detector, an empathetic re-
sponse generator, a monitoring interface, a
voice activity detector, a speech recognizer,
a speech synthesizer, a gesture classification,
and several controllers.

2. We provide three different visual-representing
conditions to compare the user’s behaviors
and opinion scores. The three conditions in-
clude no visualization (a black screen), a cat
face-based emotion expression, and an avatar-
based gesture expression.

3. We evaluate our dialogue system with six par-
ticipants collected for our experiments. The
experiments are performed under three differ-
ent visual-expressing conditions. We analyze
the experimental results which are dialogues
in text form and average mean opinion scores.

The remainder of this paper is formed as follows.
We explain our emotion-based Korean multimodal
empathetic dialogue system in Section 2. In Sec-
tion 3, the experimental results of our dialogue sys-
tem are discussed. Section 4 contains the related
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work in multimodal dialogue systems and empa-
thetic dialogues. Finally, we draw our conclusion
in Section 5.

2 Empathetic Dialogue System

We illustrate the emotion-based Korean multimodal
empathetic dialogue system. As shown in Fig. 1,
the overall architecture of the dialogue system is
composed of modules on a device and server(s).
The device must be equipped with at least a mi-
crophone, a speaker, a display, and a computer for
voice activity detection, speech recognition, speech
synthesis, and visual expression. The visual expres-
sion is derived from either a cat face-based emotion
expression (V1) or an avatar-based gesture expres-
sion (V2). The modules on server(s) are an emo-
tion detector, an empathetic response generator, a
monitoring service, and the main controller to re-
ceive inputs (user information and a user speech in
text) from the device and to send outputs (a system
response in text, a detected emotion class, and esti-
mated probabilities of a user emotion and a system
dialogue strategy) to the device. Those modules
can operate on the device instead of server(s) if the
computing and memory resources on the device
afford them. Otherwise, they can be executed on a
single server or several servers in consideration of
the resources on the server(s).

2.1 Emotion Classification Model

For generating more empathetic responses, utiliza-
tion of user emotions is essential. Therefore we
need an emotion classification model recognizing
the user’s emotion from the current user utterance
among happy, sad, fear/anxiety, angry, surprise, dis-
gust, and neutral in accordance with Ekman’s six
basic emotions (Ekman, 1992). The text emotion
classification model (Lim et al., 2021) on the basis
of Korean-English T5 (KE-T5) (Kim et al., 2021b),
a T5 (Raffel et al., 2020)-based pre-trained model
for both English and Korean, is adopted as the
emotion detection model in our architecture. And
the emotion detection model is re-trained on the
extended version of the Korean empathetic con-
versation corpus (Yang et al., 2020) because the
dataset used in (Lim et al., 2021) is on the basis of
eight emotions.

2.2 Dialogue Generation Model

The dialogue generation model aims to automati-
cally generate system responses in an empathetic

manner, based on the latest three user utterances
by utilizing the user emotion and the system’s dia-
logue strategy. The user emotion is decided among
the seven emotions as defined in Section 2.1, and
the system dialogue strategy is determined among
clarification, back-channel, facilitation, approval,
disapproval, surprise, encouragement, evaluation,
echoic, greeting, opinion, suggestion, and persona
according to the extended version of the Korean
empathetic conversation corpus (Yang et al., 2020).
The KE-T5-based empathetic dialogue model (Jang
et al., 2022) is employed as the empathetic re-
sponse generation model in our architecture after
the model is re-trained on the extended version of
the Korean empathetic conversation corpus (Yang
et al., 2020) because the persona class is added to
the strategy classes.

2.3 User Interface

For human-machine multimodal interaction, we
provide two versions of a user interface which are
a cat face-based and an avatar-based user interface.
Whenever our empathetic dialogue system starts,
either of them can be chosen to deliver adequate
visual-representation to the system responses. Both
versions receive user information such as a user ID
and user voice in speech. Once the user voice is
detected, the speech recognition (speech to text) of
the Web Speech API transforms the voice into the
text so that emotion detection and empathetic re-
sponse generation modules can obtain and process
the text through the main controller on a server. Af-
ter the emotion detection and empathetic response
generation modules produce the recognized user
emotion and the system response in the form of
text, their outputs are sent to the chosen version of
the user interface for the motion expression and the
speech synthesis (text to speech).

2.3.1 Cat Face-Based User Interface

The first version (V1) of the user interface, a cat
face-based Web user interface, receives the gen-
erated system response in text form and the de-
tected user emotion for the speech synthesis and
the emotion expression respectively. According to
the emotion types in Section 2.1, seven different
cat face-based motions are designed to express the
user’s emotion as shown in Fig. 2. The device can
therefore provide the audio and visual interaction
simultaneously to the user, through the audio con-
troller and the emotion expression controller.
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Figure 1: Overall architecture of our emotion-based Korean multimodal empathetic dialogue system

(a) Happy (b) Sad (c) Fear/Anxiety (d) Angry (e) Surprise (f) Disgust (g) Neutral

Figure 2: Seven different cat face-based motions

2.3.2 Avatar-Based User Interface

The second version (V2) of the user interface, an
avatar-based Unity user interface, receives the gen-
erated system response in the form of text, the de-
tected user emotion, and the suggested system dia-
logue strategy for speech synthesis and gesture ex-
pression. The current gesture classification module
randomly selects a gesture from the seven differ-
ent general-purpose avatar gestures as depicted in
Fig. 3. The gestures include holding out one hand
(A) or both hands (D), tilting (B) or nodding (E)
the head, crossing the arms (C), and putting one
hand (F) or both hands (G) on the chest. If some
specific-purpose gestures are added afterward, the
gesture classification module can utilize the given
user emotion and system strategy to choose a more
appropriate gesture for future work. The synthe-
sized system voice in speech and the chosen gesture
class are transmitted to the avatar controller so that
the avatar server can send both information to the
avatar client. Then the avatar client on the device
can play the voice and gesture motion concurrently.

2.3.3 Monitoring Interface

The monitoring web interface is provided for par-
ticipants so that they can check their current and

some recent past emotions, and the current sys-
tem dialogue strategy, as illustrated in Fig. 4. The
x-axis and y-axis of the user emotion graph repre-
sent the time when the emotion is detected and the
estimated emotion probabilities. And the system
dialogue strategy probabilities are presented in the
radial graph.

3 Experiments

For evaluating our emotion-based Korean multi-
modal empathetic dialogue system, we analyze
the dialogue logs and the averaged mean opinion
scores (MOS) achieved by six participants. MOS
is commonly used to assess the dialogue system
since no existing automatic evaluation metrics cor-
rectly measure the performance of the dialogue
generation task. Our dialogue system was also eval-
uated in three different visual-representing condi-
tions which are no visual (a black screen), the cat
face-based, and the avatar-based expression meth-
ods.

3.1 Experimental Settings

A 160 cm kiosk built in a microphone, a speaker,
a display, and a computer is employed for all our
experiments conducted with six participants and
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(a) Gesture A (b) Gesture B (c) Gesture C (d) Gesture D (e) Gesture E (f) Gesture F (g) Gesture G

Figure 3: Seven different general-purpose avatar gestures

Figure 4: Monitoring interface drawing estimated probabilities of a current system strategy and latest user emotions

three visual expressing conditions. A participant
starts a conversation with the kiosk given the condi-
tion, finishes the conversation when the participant
wants, has a pause while other participants have
a conversation with the kiosk, starts another con-
versation with the kiosk under another condition
different from the first condition, and iterates the
same steps until the participant tests all three vi-
sual conditions. The order of conditions given to
each participant is randomly shuffled so that the
evaluation results are not affected by the order.

For the speech synthesis, the Kakao text-to-
speech API is selected because it provides a calm
female voice in Korean, which sounds proper for
most empathetic dialogues.

3.2 Experimental Results

For observing the changes in terms of participants’
behavior, the dialogue logs were recorded individ-
ually depending on the participant and the visual
condition. The numbers of user utterances per dia-
logue and words per user utterance are calculated
on average, as shown in Table 1. The average num-
ber of words per user utterance for all three condi-

tions is almost the same, whereas the users tend to
talk less with the cat face and more with the avatar.

The participants graded each evaluation item on
a 5-point scale from 1 to 5. A participant consid-
ers an evaluation item very bad if the participant
scores 1 for the item, whereas scoring 5 means
very good. The questionnaire was given to the par-
ticipants before the experiment and contained the
questions as described in Table 2. Except for Q4,
all participants gave a mark for each conversation
under a given visual condition. Question Q4 was
only rated when no black screen was provided. We
observed that the participants gave higher MOS
with the cat face although we utilize the same emo-
tion detector and the empathetic dialogue generator
for all conditions. In case of question Q4, the partic-
ipants considered that the emotion-based cat face
expression was more proper than the random gen-
eral purpose gesture-based avatar expression. The
overall satisfaction scores (Q5) showed that the par-
ticipants were the most satisfied with the cat face
and the least satisfied with the avatar. The result
that the avatar-based representation achieved lower
MOS than the black screen implies the importance
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Evaluation item None Cat face Avatar
The average number of user utterances per dialogue 17.0 16.3 18.3
The average number of words per user utterance 3.8 4.0 4.0

Table 1: Average numbers of user utterances per dialogue and words per user utterance under three visual conditions

Evaluation item None Cat face Avatar
Q1 The recognized emotion was correct 4.2 4.2 4.2
Q2 The system strategy was appropriate 3.8 4.0 3.7
Q3 The system response was appropriate 4.0 4.0 3.3
Q4 The cat face or avatar gesture matched with the system response n/a 3.8 2.8
Q5 The overall dialogue satisfied me 4.0 4.2 3.3

Table 2: Average mean opinion scores under three visual conditions

of providing appropriate visual-representation by
understanding given user utterances.

4 Related Work

Several social robots providing multimodal in-
teraction have been introduced for different pur-
poses. The baby seal-shaped robot PARO was de-
veloped by the National Institute of Advanced
Industrial Science and Technology in Japan for
robot therapy (Wada and Shibata, 2007). And the
PARO robot was utilized for examining whether
the robot can support family caregivers caring for
older persons with dementia (Inoue et al., 2021a).
The Pepper robot, a wheeled humanoid robot pro-
duced by SoftBank Robotics, was initially designed
for business-to-business in SoftBank stores and
has been utilized for a variety of applications for
business-to-consumer, business-to-academics, and
business-to-developers (Pandey and Gelin, 2018).
(Glas et al., 2016) created the ERICA robot, one
of the most humanlike android robots, whose func-
tionalities include conversation, advanced sensing,
and speech synthesis. And the abilities of the ER-
ICA robot extended into one-on-one attentive lis-
tening (Inoue et al., 2020) and multi-party attentive
listening (Inoue et al., 2021b). The ERICA robot
was also utilized for empathetic conversation dur-
ing the Covid-19 quarantine (Ishii et al., 2021).

As empathy plays a crucial role in communica-
tion, there have been several attempts to generate
more empathetic system responses in text-based
conversations. An end-to-end empathetic chatbot
CAiRE (Lin et al., 2020) recognizes user emo-
tions and generates responses in an empathetic
manner, based on the Generative Pre-trained Trans-
former (Radford et al., 2018). (Zheng et al., 2021)

proposed a multi-factor hierarchical framework for
empathetic response generation, which consists of
communication mechanism, dialog act, and emo-
tion. (Zhong et al., 2020) suggested a novel large-
scale dataset (PEC) and a BERT (Devlin et al.,
2019)-based response selection model for persona-
based empathetic conversations. (Li et al., 2021)
and (Kim et al., 2021a) focused on emotion causes
for generating empathetic responses. (Sabour et al.,
2022) leveraged commonsense to achieve addi-
tional information such as user’s situations and
feelings. And the information was utilized for the
enhancement of empathetic response generation.

5 Conclusion

This paper proposes an emotion-based Korean mul-
timodal empathetic dialogue system whose sub-
modules include an emotion detector, an empa-
thetic response generator, a monitoring interface, a
web interface, and a unity interface. We evaluated
our dialogue system by analyzing the dialogues in
text and the average mean opinion scores under the
three different visual-representing conditions and
observed the significance of proper visual expres-
sions. For future research, gesture classification
with more specific-purpose gestures and system
emotion expression corresponding to the system
response will be considered.
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