@inproceedings{terragni-etal-2022-betold,
title = "{BETOLD}: A Task-Oriented Dialog Dataset for Breakdown Detection",
author = "Terragni, Silvia and
Guedes, Bruna and
Manso, Andre and
Filipavicius, Modestas and
Khau, Nghia and
Mathis, Roland",
editor = "Wu, Xianchao and
Ruan, Peiying and
Li, Sheng and
Dong, Yi",
booktitle = "Proceedings of the Second Workshop on When Creative AI Meets Conversational AI",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.cai-1.4",
pages = "23--34",
abstract = "Task-Oriented Dialog (TOD) systems often suffer from dialog breakdowns - situations in which users cannot or do not want to proceed with the conversation. Ideally TOD systems should be able to detect dialog breakdowns to prevent users from quitting a conversation and to encourage them to interact with the system again. In this paper, we present BETOLD, a privacy-preserving dataset for breakdown detection. The dataset consists of user and system turns represented by intents and entity annotations, derived from NLU and NLG dialog manager components. We also propose an attention-based model that detects potential breakdowns using these annotations, instead of the utterances{'} text. This approach achieves a comparable performance to the corresponding utterance-only model, while ensuring data privacy.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="terragni-etal-2022-betold">
<titleInfo>
<title>BETOLD: A Task-Oriented Dialog Dataset for Breakdown Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvia</namePart>
<namePart type="family">Terragni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bruna</namePart>
<namePart type="family">Guedes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Manso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Modestas</namePart>
<namePart type="family">Filipavicius</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nghia</namePart>
<namePart type="family">Khau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roland</namePart>
<namePart type="family">Mathis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on When Creative AI Meets Conversational AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xianchao</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peiying</namePart>
<namePart type="family">Ruan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Task-Oriented Dialog (TOD) systems often suffer from dialog breakdowns - situations in which users cannot or do not want to proceed with the conversation. Ideally TOD systems should be able to detect dialog breakdowns to prevent users from quitting a conversation and to encourage them to interact with the system again. In this paper, we present BETOLD, a privacy-preserving dataset for breakdown detection. The dataset consists of user and system turns represented by intents and entity annotations, derived from NLU and NLG dialog manager components. We also propose an attention-based model that detects potential breakdowns using these annotations, instead of the utterances’ text. This approach achieves a comparable performance to the corresponding utterance-only model, while ensuring data privacy.</abstract>
<identifier type="citekey">terragni-etal-2022-betold</identifier>
<location>
<url>https://aclanthology.org/2022.cai-1.4</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>23</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BETOLD: A Task-Oriented Dialog Dataset for Breakdown Detection
%A Terragni, Silvia
%A Guedes, Bruna
%A Manso, Andre
%A Filipavicius, Modestas
%A Khau, Nghia
%A Mathis, Roland
%Y Wu, Xianchao
%Y Ruan, Peiying
%Y Li, Sheng
%Y Dong, Yi
%S Proceedings of the Second Workshop on When Creative AI Meets Conversational AI
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F terragni-etal-2022-betold
%X Task-Oriented Dialog (TOD) systems often suffer from dialog breakdowns - situations in which users cannot or do not want to proceed with the conversation. Ideally TOD systems should be able to detect dialog breakdowns to prevent users from quitting a conversation and to encourage them to interact with the system again. In this paper, we present BETOLD, a privacy-preserving dataset for breakdown detection. The dataset consists of user and system turns represented by intents and entity annotations, derived from NLU and NLG dialog manager components. We also propose an attention-based model that detects potential breakdowns using these annotations, instead of the utterances’ text. This approach achieves a comparable performance to the corresponding utterance-only model, while ensuring data privacy.
%U https://aclanthology.org/2022.cai-1.4
%P 23-34
Markdown (Informal)
[BETOLD: A Task-Oriented Dialog Dataset for Breakdown Detection](https://aclanthology.org/2022.cai-1.4) (Terragni et al., CAI 2022)
ACL
- Silvia Terragni, Bruna Guedes, Andre Manso, Modestas Filipavicius, Nghia Khau, and Roland Mathis. 2022. BETOLD: A Task-Oriented Dialog Dataset for Breakdown Detection. In Proceedings of the Second Workshop on When Creative AI Meets Conversational AI, pages 23–34, Gyeongju, Republic of Korea. Association for Computational Linguistics.