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Abstract

This paper details our participation in the Chal-
lenges and Applications of Automated Ex-
traction of Socio-political Events from Text
(CASE) workshop @ EMNLP 2022, where
we take part in Subtask 1 of Shared Task 3
(Tan et al., 2022a). We approach the given
task of event causality detection by proposing
a self-training pipeline that follows a teacher-
student classifier method. More specifically,
we initially train a teacher model on the true,
original task data, and use that teacher model
to self-label data to be used in the training
of a separate student model for the final task
prediction. We test how restricting the num-
ber of positive or negative self-labeled exam-
ples in the self-training process affects classi-
fication performance. Our final results show
that using self-training produces a comprehen-
sive performance improvement across all mod-
els and self-labeled training sets tested within
the task of event causality sequence classi-
fication. On top of that, we find that self-
training performance did not diminish even
when restricting either positive/negative exam-
ples used in training. Our code is be pub-
licly available at https://github.com/Gzhang-
umich/1CademyTeamOfCASE.

1 Introduction

Task 1 of the CASE workshop @ EMNLP 2022
works to identify and classify event causality in
socio-political event (SPE) data, with subtask 1 be-
ing a binary classification of causality. In other
words, participants are tasked with answering:
Does an event sentence contain cause-effect mean-
ing? The workshop provides data from Causal
News Corpus (CNC) (Tan et al., 2022b) for train-
ing and evaluation of the subtask. Causality itself
aims to identify a semantic relationship between

∗ The two authors contributed equally to this work.
† Corresponding Author

two events where one event (the cause) is responsi-
ble for the production of the other event (the effect).
Utilizing the CNC dataset serves as a benchmark
for participants to evaluate the ability of a given
model or process to identify causality in event data.

We approach the problem of causality sequence
classification by applying self-training (Ouali et al.,
2020; Van Engelen and Hoos, 2020; Triguero et al.,
2015) as a means to improve the performance of
language models in this task. The goal of self-
training is to generate proxy labels for previously
unlabeled data to enhance the learning process. The
self-training process works by iteratively labeling
previously unpredicted data, and then using the
new pseudo-labels as truthful labels in the next
training stage. The intuition behind self-training
comes from the fact that it can pseudo-expand the
training space to basically an unlimited size in a
very cheap manner, as no hand-labeling is required
in the process.

Additionally, we run supplementary experiments
to test the effectiveness of self-training against
various transformer-based data augmentation tech-
niques (Feng et al., 2021) and separate multi-task
learning approaches (Caruana, 1997) that we origi-
nally designed for the competition. The description
and results of these additional experiments can be
found in the Appendix.

In summary, our main contributions are as fol-
lows.

1) We propose a self-training pipeline for the task
of causality detection in SPE data for the purposes
of competing in Subtask 1 of Shared Task 3 of the
CASE workshop @ EMNLP 2022. Our best model
achieved 0.8135 accuracy and a 0.8398 F1 score on
the competition’s test set.

2) We evaluate our self-training pipeline with col-
lected self-labeled datasets of highly positive sam-
ples, highly negative samples, and even distributed
positive and negative samples. We show that using
self-labeled datasets improves performance across
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Figure 1: A) Self-training pipeline with Teacher Model. B) We use the self-labeled examples as part
of the training when training in Student Models for the task of causality classification

the board on all tested models, and that the perfor-
mance increase provided by self-training did not
significantly change based on the ratio of positive
to negative self-labeled samples used in training.

For all implementations of our code, we use
the HuggingFace Transformers library (Wolf et al.,
2020) (version 4.21.2) and all models are built us-
ing PyTorch (Paszke et al., 2019) (version 1.12.1).

Organization. As for how the rest of the paper
is outlined, §2 describes the data used in the train-
ing, evaluation, and final testing of our models, §3
recounts the procedures used in our self-training
approach, §4 discusses our findings, and §5 wraps
up the paper with our final remarks and ideas for
future direction.

2 Data

2.1 Causal News Corpus

The CNC dataset (Tan et al., 2022b) is a cor-
pus of 3,559 event sentences from protest event
news labeled on whether a given sentence con-
tains causal relations or not. The data of the
CNC comes from two workshops focused on min-
ing socio-political data: Automated Extraction of

Socio-political Events from News (AESPEN) (Hür-
riyetoğlu et al., 2020) in 2020 and the CASE 2021
workshop @ ACL-IJCNLP (Hürriyetoğlu et al.,
2021). For the purposes of subtask 1, the data is
split into a training set of 2925 examples, a develop-
ment set of 323 examples, and a final test set of 311
examples that is used as an evaluation benchmark
for the competition.

2.2 Self-labeled Training Data

Sample sentences used in the self-labeling phase
of self-training are gathered from 205,328 articles
on Wikipedia. The Wikipedia dataset is built from
the Wikipedia dump 1 and is available as on Hug-
gingFace Dataset library (Lhoest et al., 2021). We
use the 20220301.simple training split to generate
our self-labeled examples.

3 Methodology

In this section, we review the methods we used in
our approach to the sequence causality classifica-
tion subtask.

1https://dumps.wikimedia.org
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3.1 Self-Training

We follow a similar teacher-student pipeline as Yal-
niz et al., 2019 that includes using a teacher model
to generate a new labeled dataset D′ from the origi-
nal dataset D and then training a new student model
on both the new labeled dataset D′ and the original
dataset D. We use the training split provided of
2925 CNC samples (Tan et al., 2022b) as the orig-
inal dataset D, and fine-tune a BERT base-cased
model (Devlin et al., 2019) for sequence classifi-
cation, which serves as our teacher model. Figure
1a shows the full pipeline from Wikipedia data
collection to saving self-labeled samples. These
self-labeled examples are used as training data for
the separate student models later in the experimen-
tation process, as shown in Figure 1b.

3.1.1 Data Preprocessing

To preprocess Wikipedia data (§ 2.2), we first split
the articles into individual sentences and discarded
all sentences of less than 50 characters and more
than 500 characters. To self-label the sentences,
we feed the sentences into the teacher model and
keep all examples with a softmax classifier over a
predetermined threshold T . For the purposes of
our experiments, we choose a T of 0.9. In total, we
collect a pool of 77,748 positive (causal) examples
and 77,940 negative (non-causal) examples. The
large total number of examples collected for this
data pool is done to minimize the overlap of exam-
ples between the later created self-labeled training
splits.

3.1.2 Training Splits

From the pools of self-labeled Wikipedia exam-
ples, we collect 5 different training sets, all with
the size of 10,000 samples but with varying ratios
of positive to negative self-labeled examples. We
collect sets with positive to negative proportions of
1:3, 1:1, and 3:1 (that is, for a positive to negative
proportion of 1:3, we include 2,500 self-labeled
positive examples in the training set and 7,500 neg-
ative samples). We design this set-up to test how
the different polarity proportions of self-labeled
data used in training affect not only overall model
accuracy, but also if there is a discrepancy between
model precision and recall with the varying polarity
splits. We chose a training split size of 10,000 ex-
amples as we notice that self-training performance
does not continue to improve with training with

splits larger than this 2. When formulating each set,
we randomly reshuffle the positive and negative
self-labeled sets and chose the first s and t positive
and negative samples for a training set that require
s positive examples and t negative examples. From
there, we combine the s positives and the t nega-
tives and again shuffle the concatenated training
set.

3.1.3 Fine-tuning on Self-labeled data
For each self-labeled dataset, we fine-tune a
classifier—which serves as our student model—on
one epoch of the self-labeled dataset and then five
epochs of the CNC provided training data. The pre-
dictions generated after the final epoch of training
are used for evaluation. We run our experiments
with student classifiers built on BERT base-cased
(Devlin et al., 2019), RoBERTa base (Liu et al.,
2019), and Google ELECTRA-base-discriminator
(Clark et al., 2016) pre-trained models.

3.2 Transformer-based Data Augmentation
and Multi-task Learning

In our participation of the CASE workshop, we also
explore both Transformer-based data augmentation
and multi-task learning as a means to improve per-
formance on causality classification. While our
both of these approaches are out-performed by
our self-training approaches and thus are not the
main focus of this paper, we still find significant
results with these methods and implement both a
Transformer-based data augmentation technique
and a multi-task architecture that comprehensively
outperform the baseline classifier for the given task.
The full methodology and experimentation of our
Transformer-based data augmentation and multi-
task learning approaches are available in the Ap-
pendix.

4 Experiments and Results

4.1 Experiment Set up
In our experimentation setup, we test all three back-
bone models (BERT, RoBERTa, and Google ELEC-
TRA Discriminator) with both the self-training
pipeline and a simple fine-tuning process that only
uses the provided CNC training set that served as
the baseline. In the baseline experiments, the clas-
sifiers are trained solely on five epochs of the CNC
training data. We conduct five trials of each setup,
each trial having a randomly initialized seed. We

2Observed in our initial internal testing phase
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Baseline Training vs. Self-Training Results

Baseline Training
(simple fine-tuning,

no self-training)

Accuracy F1 Recall Precision MCC
BERT 0.8204 0.8394 0.8516 0.8276 0.6363
RoBERTa 0.8390 0.8543 0.8561 0.8525 0.6745
Google ELECTRA Discriminator 0.8365 0.8535 0.8640 0.8432 0.6689

Self-Training

Ratio of Positive to Negative Self-Labeled
Examples used in training

Accuracy F1 Recall Precision MCC

BERT 1:3 0.8380 0.8531 0.8539 0.8525 0.6726
1:1 0.8225 0.8377 0.8315 0.8468 0.6425
3:1 0.8380 0.8526 0.8502 0.8552 0.6728

RoBERTa 1:3 0.8576 0.8715 0.8764 0.8671 0.7123
1:1 0.8586 0.8711 0.8670 0.8755 0.7149
3:1 0.8586 0.8719 0.8727 0.8711 0.7142

Google ELECTRA Discriminator 1:3 0.8400 0.8579 0.8764 0.8415 0.6760
1:1 0.8524 0.8665 0.8689 0.8641 0.7016
3:1 0.8421 0.8580 0.8652 0.8510 0.6806

Table 1: Results of the evaluating the CNC development set on both simple fine-tuning with only CNC training data
(top) and fine-tuning classifiers on training sets of self-labeled data in addition to CNC training data (bottom). Bold
indicates highest performance across all splits and model types, underline indicates the highest performance of the

specific model type.

use the CNC development set as our testing bench-
mark due to the limited number of allowed work-
shop testing phase submissions.

4.2 Classifier Set up

In our experiments, we run all trials on a Tesla
V100-SXM2-16GB GPU device. We use an
AdamW optimizer with β1 = 0.9, β2 = 0.999, a
learning rate of 5e− 5, and a linear decay rate. Fi-
nally, all experiments are run with a batch size of
8.

4.3 Findings

Table 1 displays the results from our experiments,
which include the averages of 5 trials for each set-
up. From the table, we can see that every self-
training setup outperforms the baseline classifier
in terms of accuracy, with an average accuracy im-
provement of 1.33% across all models and polarity
splits. Furthermore, for all but one self-training
set-up, there is an improvement of the F1 score
from the baseline, with an average improvement of
0.011.

Other key takeaways from our results are that 1)
there is very little overall performance degradation
across the polarity splits (1:3, 1:1, 3:1) in the self-
labeled datasets (only the BERT model shows a
range of F1 scores above 0.01) and 2) there is low
discrepancy between recall and precision among
the splits (only the 1:3 split with an ELECTRA
backbone shows a recall-precision discrepancy >
0.015.)

4.4 Competition Results

Our best-performing prediction set of the final com-
petition testing comes from a RoBERTa classifier
trained on a self-labeled training set with a polarity
ratio of 1:1. The results of our all of our compe-
tition submissions 3 are shown in Table 2. All of
our competition submissions comprehensively out-
perform the provided baseline, and our best overall
performing submission achieve competition rank-
ings of 6th in accuracy, 10th in F1, 7th in recall,
7th in precision, and 10th in MCC.

5 Conclusion and Discussion

This paper explores how training a classifier on
self-labeled data can improve the performance of
sequence classification tasks. In our case, we exam-
ine the effect of self-training on the task of event
causality in socio-political event data as part of
Subtask 1 of Shared Task 3 of the CASE workshop
@ EMNLP 2022.

Our results show that training a classifier on self-
labeled data using a teacher-student approach com-
prehensively improves task performance. Further-
more, we find that performance improvement from
self-training did not differ significantly between
self-labeled training sets with varying levels of ex-
ample polarity. This indicates that the model is
capable of reaping the full benefits of self-training
despite having limited access to positive or negative
samples. One thing that could help explain this is
our relatively high threshold T of 0.9 which deter-
mines whether or not to keep an example during the

3Workshop competition limited participants to five submis-
sions for the testing phase
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Competition Results (CNC Test Set)
Ratio of Positive to Negative

Self-Labeled Examples
Accuracy F1 Recall Precision MCC

RoBERTa 1:3 0.8071 0.8256 0.8068 0.8452 0.6108
1:1 0.8135 0.8398 0.8636 0.8172 0.6185
3:1 0.7974 0.8215 0.8239 0.8192 0.5873

ELECTRA
1:1 0.8135 0.8324 0.8181 0.8471 0.6228
3:1 0.7942 0.8107 0.7784 0.8457 0.5886

Provided Competition Baseline
(BERT baseline model)

0.7781 0.8120 0.8466 0.7801 0.5452

Table 2: Results of competition submissions on CNC test set. Bold indicates highest performer.

initial self-labeled process. Further research should
explore whether a lower T could alter the bene-
fits of self-training, especially when self-labeled
examples would have a higher chance of being in-
correctly labeled.

Next, given that our self-labeled examples are
gathered from an assortment of articles from
Wikipedia, it should be well noted that the benefits
of self-training are apparent even when the self-
labeled examples are not domain specific to the
original labeled data. We decide to use Wikipedia
as the source of our self-labeled examples as we
view it as a more accessible source with far greater
amounts available unlabeled data. Thus, our find-
ings indicate that performance improvements from
self-training work with non-domain specific data,
which alleviates us from the restriction of confining
our self-labeled data to the single domain of the
original labeled data.

Finally, one more aspect of our experiments that
should be further explored is the classifier’s ac-
tual dependence on the self-labeled data versus the
originally provided training data. In our setup, we
choose to train our models on one epoch of self-
labeled data and then on five epochs of the original
training data in order to prioritize the true labeled
training data. We believe that it would be worth-
while to explore training classifiers with a higher
training priority on the self-labeled data, or even to
test the performance of classifiers trained solely on
the self-labeled data, without the original true data.
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Figure 2: Multi-task learning architectures used in supplementary testing.

6 Appendix

Here, we outline the supplementary experimenta-
tion we conducted to compare our self-training
results with other methods we explored in the
CASE event causality competition. These methods
include a few popular transformer-based textual
data augmentation techniques and two multi-task
learning-based classifier architectures.

6.1 Transformer-based Data Augmentation

In general, data augmentation—within the con-
text of textual data—works by altering a given
labeled example and attaching the label of the orig-
inal example to the augmented one. Each of the
transformer-based data augmentation techniques
is considered with the same goal of increasing the
training data space to improve the model perfor-
mance on the task of causality classification. We
use the CNC training split of 2925 as the original
data to be augmented in our experiments.

6.1.1 Sequence to Sequence Data
Augmentation

Sequence-to-sequence text augmentation works by
taking the sentence of the original example (all of
our data examples are English examples), translat-
ing the sentence into a foreign language, and then

finally translating the rendered sentence back to
the original language. This works by altering some
words or clusters of words in a sentence while pre-
serving the original structure and semantics. For
the purposes of our experiments, we use two for-
eign languages to augment the data, German and
Russian, using HuggingFace’s ported versions of
the Facebook FAIR’s WMT19 News Translation
Task Submission (Ng et al., 2019). The sequence-
to-sequence augmented training set has 8,775 ex-
amples; 2,925 from the original training set and
5,850 augmented examples.

6.1.2 Random Fill-mask Data Augmentation

In random fill-mask augmentation, we first ran-
domly select a word from the original. From there,
we replace the selected word with a masking token
and use the new sentence with masking as input to
a pre-trained RoBERTa fill-mask language model
(Liu et al., 2019) to select the three most likely
fill-mask options for the masked word. With the
three selected substitutions for the masked word,
we create three new sentences by replacing each re-
spective substitution with the original masked word
and keeping the original label of the sentence with
the new augmented examples. The final random
fill-mask augmented set has 11,700 total samples.
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6.1.3 NER Fill-Mask Data Augmentation
The NER fill-mask data augmentation functions
in a similar fashion to the random fill-mask data
augmentation, but instead of selecting a single ran-
dom word to replace, we make substitutions to any
named entities identified by Named Entity Recog-
nition (NER) (Mikheev et al., 1999; Mohit, 2014).
Specifically, we use the EntityRecognizer module
from spaCy 4 to identify which tokens in a sentence
corresponded to named entities. For each example
sentence from the original training data that con-
tained named entities, we create three augmented
sentences by substituting the best unused fill-mask
option for each named entity in the text. The fi-
nal NER augmented dataset has 10,443 example
sentences in total.

6.2 Multi-Task Learning Approaches

Multi-task learning (MTL) (Caruana, 1997; Zhang
and Yang, 2021; Ruder, 2017) is a paradigm of
machine learning that improves the performance
of a model in a given task by leveraging simulta-
neous learning of other distinct but related tasks.
Our MTL architectures learn the distinct tasks of
entailment classification (binary classification of
whether the meaning of one sentence can be in-
ferred from another sentence) and event detection
(whether a sentence contains information about
a socio-political event), then combine the prior
knowledge of those two tasks to help supplement
the classifier’s prediction to the task of causality
classification.

6.2.1 MTL Datasets
We used two distinct datasets for the multi-task
learning of entailment detection and event detec-
tion.

Entailment Detection Dataset We evaluate us-
ing the Recognizing Textual Entailment (RTE) task
provided in the GLUE Benchmark (Wang et al.,
2018) for the entailment detection task. In train-
ing, we used the given training set that consisted
of 2490 examples. Each example from the RTE
dataset consisted of two sentences and a binary
label on whether or not one of the two sentences
holds logical entailment to the other. To better fit
the structure of the other data, we concatenated the
two provided sentences into a single text to be used
as input into the models.

Event Detection Dataset In order to learn the
4https://spacy.io/

task of event detection, we used data provided in
the second shared task of CASE @ ACL-IJCNLP
2021 (Hürriyetoğlu et al., 2021), which provided
data to the object of sentence-level event classifica-
tion. The data provided from subtask 2 of CASE
2021 included 1023 examples sentences of socio-
political events, labeled using the Armed Conflict
Location & Event Data Project (ACLED) (Raleigh
et al., 2010) event taxonomy, which consists of 25
fine-grained event subtypes. These 1023 example
sentences are concatenated with 720 non-event-
specific English sentences to create an event detec-
tion dataset, with all sentences coming from the
event classification receiving a label of ’1’, denot-
ing that the sentence contained information about
an event.

6.2.2 MTL Pre-training

Prior to fine-tuning our models for the task of
causality classification, we train a shared encoder
(Guo et al., 2021)-a RoBERTa pre-trained model-
on the separate tasks of event detection and entail-
ment detection by fine-tuning the shared encoder
on the respective datasets for each task. We fine-
tune three epochs for both tasks.

6.2.3 MTL Architectures

We experiment with two similar but different archi-
tectures in MTL testing. In both architectures, we
first simultaneously fine-tune a classifier on the two
tasks of entailment detection and event detection.
Because we have distinct datasets for each respec-
tive task, we implement this by using the shared
encoder approach, where model parameters are
hard-shared and each task has its own task-specific
classification head.

The distinction between our two MTL architec-
tures comes from how we choose to combine prior
knowledge. The architectures we build are shown
in Figure 2. Both architectures include task-specific
classification heads for the tasks of entailment de-
tection and event detection. The distinction be-
tween the two architectures comes in where Ar-
chitecture no. 2 also includes a causality-specific
classification head; the outputs of all three task
heads are combined and inputted into a final linear
layer to output the final logits prediction. Architec-
ture no. 1 omits the causality-specific classification
head and simply combines the outputs of the en-
tailment detection and event detection heads before
the linear layer.
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Supplementary Experiments Results
Accuracy F1 Recall Precision MCC

Baseline 0.8390 0.8543 0.8561 0.8525 0.6745
Self-Training (1:1 polarity) 0.8586 0.8711 0.8670 0.8755 0.7149

Sequence to Sequence 0.8235 0.8430 0.8596 0.8270 0.6424
Random Fill-Mask 0.8406 0.8562 0.8574 0.8556 0.6778Transformer-based

Data Augmentations
NER Fill-Mask 0.8452 0.8571 0.8427 0.8721 0.6888
Architecture 1 0.8498 0.8655 0.8764 0.8548 0.6960Multi-Task Learning
Architecture 2 0.8313 0.8489 0.8596 0.8385 0.6583

Table 3: Results from supplementary testing done on CNC development set. All runs use a RoBERTa backbone
model. The baseline and self-training results are taken from the main experiments of the paper. Bold indicates

outperforming the baseline.

AdamW Optimizer w/ Linear Decay
β1 0.9
β2 0.999
Per device batch size 8

Table 4: Classifier hyperparameter settings.

6.3 Supplementary Experiments and Results

6.3.1 Set up

For the supplementary experiments, we follow the
same setup as in the main study to maintain con-
sistency. Thus, models trained on a transformer-
augmented dataset are trained on five epochs of
the respective dataset, and each MTL architecture
is trained on five epochs of the CNC training set.
The evaluations are calculated on the predictions
made after the final epoch of training. Likewise,
we use the same hyperparameter setup as the main
experiments, meaning that we run all trials on a
Tesla V100-SXM2-16GB GPU device. Hyperpa-
rameters are listed in Table 4. For purposes of the
supplementary experiments, we run all trials using
a RoBERTa backbone.

6.3.2 Results

Table 3 displays the results of our supplementary
tests. Consistent with the main study, the results
are the averages over five trials for each of the se-
tups on the CNC development set. Between the
transformer-augmented experiments, the random
fill-mask and NER fill-mask experiments outper-
formed the baseline in terms of both accuracy and
F1 score. Similarly, Architecture no. 1 of the MTL
approaches also outperformed the baseline in terms
of accuracy and F1.

6.3.3 Discussion
We include the supplementary experiments to 1)
show how our self-training results compared to pop-
ular state-of-the-art data augmentation techniques
using contemporary NLP, and 2) propose the multi-
task learning architectures we originally developed
for the Subtask 1 of the competition. Although
the final results of the MTL approaches did not
reach the same level of performance as the self-
training approaches and therefore did not belong in
the main paper, we believe the MTL experiments
and results are still notable and worth mentioning
for further investigation.
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