@inproceedings{ni-etal-2022-rong,
title = "融合提示学习的故事生成方法(A Story Generation Method Incorporating Prompt Learning)",
author = "Ni, Xuanfan and
Li, Piji",
editor = "Sun, Maosong and
Liu, Yang and
Che, Wanxiang and
Feng, Yang and
Qiu, Xipeng and
Rao, Gaoqi and
Chen, Yubo",
booktitle = "Proceedings of the 21st Chinese National Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Nanchang, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2022.ccl-1.16",
pages = "166--177",
abstract = "{``}开放式自动故事生成通过输入故事的开头、大纲、主线等,得到具有一致性、连贯性和逻辑性的故事。现有的方法想要提升生成故事的质量,往往需要大量训练数据和更多参数的模型。针对以上问题,该文利用提示学习在零样本与少样本场景下的优势,同时使用外部常识推理知识,提出了一种故事生成方法。该方法将故事生成分为三个阶段:输入故事的开头,常识推理模型生成可能的事件;根据类型不同,将事件填入问题模板中,构建引导模型生成合理回答的问题;问答模型产生对应问题的答案,并选择困惑度最小的作为故事下文。重复上述过程,最终生成完整的故事。自动评测与人工评测指标表明,与基线模型相比,该文提出的方法能够生成更连贯、具体和合乎逻辑的故事。{''}",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ni-etal-2022-rong">
<titleInfo>
<title>融合提示学习的故事生成方法(A Story Generation Method Incorporating Prompt Learning)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuanfan</namePart>
<namePart type="family">Ni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piji</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Nanchang, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“开放式自动故事生成通过输入故事的开头、大纲、主线等,得到具有一致性、连贯性和逻辑性的故事。现有的方法想要提升生成故事的质量,往往需要大量训练数据和更多参数的模型。针对以上问题,该文利用提示学习在零样本与少样本场景下的优势,同时使用外部常识推理知识,提出了一种故事生成方法。该方法将故事生成分为三个阶段:输入故事的开头,常识推理模型生成可能的事件;根据类型不同,将事件填入问题模板中,构建引导模型生成合理回答的问题;问答模型产生对应问题的答案,并选择困惑度最小的作为故事下文。重复上述过程,最终生成完整的故事。自动评测与人工评测指标表明,与基线模型相比,该文提出的方法能够生成更连贯、具体和合乎逻辑的故事。”</abstract>
<identifier type="citekey">ni-etal-2022-rong</identifier>
<location>
<url>https://aclanthology.org/2022.ccl-1.16</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>166</start>
<end>177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 融合提示学习的故事生成方法(A Story Generation Method Incorporating Prompt Learning)
%A Ni, Xuanfan
%A Li, Piji
%Y Sun, Maosong
%Y Liu, Yang
%Y Che, Wanxiang
%Y Feng, Yang
%Y Qiu, Xipeng
%Y Rao, Gaoqi
%Y Chen, Yubo
%S Proceedings of the 21st Chinese National Conference on Computational Linguistics
%D 2022
%8 October
%I Chinese Information Processing Society of China
%C Nanchang, China
%G Chinese
%F ni-etal-2022-rong
%X “开放式自动故事生成通过输入故事的开头、大纲、主线等,得到具有一致性、连贯性和逻辑性的故事。现有的方法想要提升生成故事的质量,往往需要大量训练数据和更多参数的模型。针对以上问题,该文利用提示学习在零样本与少样本场景下的优势,同时使用外部常识推理知识,提出了一种故事生成方法。该方法将故事生成分为三个阶段:输入故事的开头,常识推理模型生成可能的事件;根据类型不同,将事件填入问题模板中,构建引导模型生成合理回答的问题;问答模型产生对应问题的答案,并选择困惑度最小的作为故事下文。重复上述过程,最终生成完整的故事。自动评测与人工评测指标表明,与基线模型相比,该文提出的方法能够生成更连贯、具体和合乎逻辑的故事。”
%U https://aclanthology.org/2022.ccl-1.16
%P 166-177
Markdown (Informal)
[融合提示学习的故事生成方法(A Story Generation Method Incorporating Prompt Learning)](https://aclanthology.org/2022.ccl-1.16) (Ni & Li, CCL 2022)
ACL