@inproceedings{lu-etal-2022-ji,
title = "基于框架语义映射和类型感知的篇章事件抽取(Document-Level Event Extraction Based on Frame Semantic Mapping and Type Awareness)",
author = "Lu, Jiang and
Li, Ru and
Su, Xuefeng and
Yan, Zhichao and
Chen, Jiaxing",
booktitle = "Proceedings of the 21st Chinese National Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Nanchang, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2022.ccl-1.22",
pages = "234--245",
abstract = "{``}篇章事件抽取是从给定的文本中识别其事件类型和事件论元。目前篇章事件普遍存在数据稀疏和多值论元耦合的问题。基于此,本文将汉语框架网(CFN)与中文篇章事件建立映射,同时引入滑窗机制和触发词释义改善了事件检测的数据稀疏问题;使用基于类型感知标签的多事件分离策略缓解了论元耦合问题。为了提升模型的鲁棒性,进一步引入对抗训练。本文提出的方法在DuEE-Fin和CCKS2021数据集上实验结果显著优于现有方法。{''}",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-etal-2022-ji">
<titleInfo>
<title>基于框架语义映射和类型感知的篇章事件抽取(Document-Level Event Extraction Based on Frame Semantic Mapping and Type Awareness)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiang</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ru</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuefeng</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhichao</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaxing</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Nanchang, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“篇章事件抽取是从给定的文本中识别其事件类型和事件论元。目前篇章事件普遍存在数据稀疏和多值论元耦合的问题。基于此,本文将汉语框架网(CFN)与中文篇章事件建立映射,同时引入滑窗机制和触发词释义改善了事件检测的数据稀疏问题;使用基于类型感知标签的多事件分离策略缓解了论元耦合问题。为了提升模型的鲁棒性,进一步引入对抗训练。本文提出的方法在DuEE-Fin和CCKS2021数据集上实验结果显著优于现有方法。”</abstract>
<identifier type="citekey">lu-etal-2022-ji</identifier>
<location>
<url>https://aclanthology.org/2022.ccl-1.22</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>234</start>
<end>245</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于框架语义映射和类型感知的篇章事件抽取(Document-Level Event Extraction Based on Frame Semantic Mapping and Type Awareness)
%A Lu, Jiang
%A Li, Ru
%A Su, Xuefeng
%A Yan, Zhichao
%A Chen, Jiaxing
%S Proceedings of the 21st Chinese National Conference on Computational Linguistics
%D 2022
%8 October
%I Chinese Information Processing Society of China
%C Nanchang, China
%G Chinese
%F lu-etal-2022-ji
%X “篇章事件抽取是从给定的文本中识别其事件类型和事件论元。目前篇章事件普遍存在数据稀疏和多值论元耦合的问题。基于此,本文将汉语框架网(CFN)与中文篇章事件建立映射,同时引入滑窗机制和触发词释义改善了事件检测的数据稀疏问题;使用基于类型感知标签的多事件分离策略缓解了论元耦合问题。为了提升模型的鲁棒性,进一步引入对抗训练。本文提出的方法在DuEE-Fin和CCKS2021数据集上实验结果显著优于现有方法。”
%U https://aclanthology.org/2022.ccl-1.22
%P 234-245
Markdown (Informal)
[基于框架语义映射和类型感知的篇章事件抽取(Document-Level Event Extraction Based on Frame Semantic Mapping and Type Awareness)](https://aclanthology.org/2022.ccl-1.22) (Lu et al., CCL 2022)
ACL