@inproceedings{huang-etal-2022-er,
title = "《二十四史》古代汉语语义依存图库构建(Construction of Semantic Dependency Graph Bank of {A}ncient {C}hinese in twenty four histories)",
author = "Huang, Tian and
Shao, Yanqiu and
Li, Wei",
editor = "Sun, Maosong and
Liu, Yang and
Che, Wanxiang and
Feng, Yang and
Qiu, Xipeng and
Rao, Gaoqi and
Chen, Yubo",
booktitle = "Proceedings of the 21st Chinese National Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Nanchang, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2022.ccl-1.40",
pages = "444--454",
abstract = "{``}语义依存图是NLP处理语义的深层分析方法,能够对句子中词与词之间的语义进行分析。该文针对古代汉语特点,在制定古代汉语语义依存图标注规范的基础上,以《二十四史》为语料来源,完成标注了规模为3000句的古代汉语语义依存图库,标注一致性的kappa值为78.83{\%}。通过与现代汉语语义依存图库的对比,对依存图库基本情况进行统计,分析古代汉语的语义特色和规律。统计显示,古代汉语语义分布宏观上符合齐普夫定律,在语义事件描述上具有强烈的历史性叙事和正式文体特征,如以人物纪传为中心,时间、地点等周边角色描述细致,叙事语言冷静客观,缺少描述情态、语气、程度、时间状态等的修饰词语等。 ''",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2022-er">
<titleInfo>
<title>《二十四史》古代汉语语义依存图库构建(Construction of Semantic Dependency Graph Bank of Ancient Chinese in twenty four histories)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tian</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanqiu</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Nanchang, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“语义依存图是NLP处理语义的深层分析方法,能够对句子中词与词之间的语义进行分析。该文针对古代汉语特点,在制定古代汉语语义依存图标注规范的基础上,以《二十四史》为语料来源,完成标注了规模为3000句的古代汉语语义依存图库,标注一致性的kappa值为78.83%。通过与现代汉语语义依存图库的对比,对依存图库基本情况进行统计,分析古代汉语的语义特色和规律。统计显示,古代汉语语义分布宏观上符合齐普夫定律,在语义事件描述上具有强烈的历史性叙事和正式文体特征,如以人物纪传为中心,时间、地点等周边角色描述细致,叙事语言冷静客观,缺少描述情态、语气、程度、时间状态等的修饰词语等。 ”</abstract>
<identifier type="citekey">huang-etal-2022-er</identifier>
<location>
<url>https://aclanthology.org/2022.ccl-1.40</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>444</start>
<end>454</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 《二十四史》古代汉语语义依存图库构建(Construction of Semantic Dependency Graph Bank of Ancient Chinese in twenty four histories)
%A Huang, Tian
%A Shao, Yanqiu
%A Li, Wei
%Y Sun, Maosong
%Y Liu, Yang
%Y Che, Wanxiang
%Y Feng, Yang
%Y Qiu, Xipeng
%Y Rao, Gaoqi
%Y Chen, Yubo
%S Proceedings of the 21st Chinese National Conference on Computational Linguistics
%D 2022
%8 October
%I Chinese Information Processing Society of China
%C Nanchang, China
%G Chinese
%F huang-etal-2022-er
%X “语义依存图是NLP处理语义的深层分析方法,能够对句子中词与词之间的语义进行分析。该文针对古代汉语特点,在制定古代汉语语义依存图标注规范的基础上,以《二十四史》为语料来源,完成标注了规模为3000句的古代汉语语义依存图库,标注一致性的kappa值为78.83%。通过与现代汉语语义依存图库的对比,对依存图库基本情况进行统计,分析古代汉语的语义特色和规律。统计显示,古代汉语语义分布宏观上符合齐普夫定律,在语义事件描述上具有强烈的历史性叙事和正式文体特征,如以人物纪传为中心,时间、地点等周边角色描述细致,叙事语言冷静客观,缺少描述情态、语气、程度、时间状态等的修饰词语等。 ”
%U https://aclanthology.org/2022.ccl-1.40
%P 444-454
Markdown (Informal)
[《二十四史》古代汉语语义依存图库构建(Construction of Semantic Dependency Graph Bank of Ancient Chinese in twenty four histories)](https://aclanthology.org/2022.ccl-1.40) (Huang et al., CCL 2022)
ACL