@inproceedings{hao-etal-2022-ji,
title = "基于{GPT}-2和互信息的语言单位信息量对韵律特征的影响(Prosodic Effects of Speech Unit`s Information Based on {GPT}-2 and Mutual Information)",
author = "Hao, Yun and
Xie, Yanlu and
Lin, Binghuai and
Zhang, Jinsong",
editor = "Sun, Maosong and
Liu, Yang and
Che, Wanxiang and
Feng, Yang and
Qiu, Xipeng and
Rao, Gaoqi and
Chen, Yubo",
booktitle = "Proceedings of the 21st Chinese National Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Nanchang, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2022.ccl-1.5/",
pages = "46--55",
language = "zho",
abstract = "{\textquotedblleft}基于信息论的言语产出研究发现携带信息量越大的语言单位,其语音信号越容易被强化。目前的相关研究主要通过自信息的方式衡量语言单位信息量,但该方法难以对长距离的上下文语境进行建模。本研究引入基于预训练语言模型GPT-2和文本-拼音互信息的语言单位信息量衡量方式,考察汉语的单词、韵母和声调信息量对语音产出的韵律特征的影响。研究结果显示汉语中单词和韵母信息量更大时,其韵律特征倾向于被增强,证明了我们提出的方法是有效的。其中信息量效应在音长特征上相比音高和音强特征更显著。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hao-etal-2022-ji">
<titleInfo>
<title>基于GPT-2和互信息的语言单位信息量对韵律特征的影响(Prosodic Effects of Speech Unit‘s Information Based on GPT-2 and Mutual Information)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanlu</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binghuai</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinsong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Nanchang, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“基于信息论的言语产出研究发现携带信息量越大的语言单位,其语音信号越容易被强化。目前的相关研究主要通过自信息的方式衡量语言单位信息量,但该方法难以对长距离的上下文语境进行建模。本研究引入基于预训练语言模型GPT-2和文本-拼音互信息的语言单位信息量衡量方式,考察汉语的单词、韵母和声调信息量对语音产出的韵律特征的影响。研究结果显示汉语中单词和韵母信息量更大时,其韵律特征倾向于被增强,证明了我们提出的方法是有效的。其中信息量效应在音长特征上相比音高和音强特征更显著。”</abstract>
<identifier type="citekey">hao-etal-2022-ji</identifier>
<location>
<url>https://aclanthology.org/2022.ccl-1.5/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>46</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于GPT-2和互信息的语言单位信息量对韵律特征的影响(Prosodic Effects of Speech Unit‘s Information Based on GPT-2 and Mutual Information)
%A Hao, Yun
%A Xie, Yanlu
%A Lin, Binghuai
%A Zhang, Jinsong
%Y Sun, Maosong
%Y Liu, Yang
%Y Che, Wanxiang
%Y Feng, Yang
%Y Qiu, Xipeng
%Y Rao, Gaoqi
%Y Chen, Yubo
%S Proceedings of the 21st Chinese National Conference on Computational Linguistics
%D 2022
%8 October
%I Chinese Information Processing Society of China
%C Nanchang, China
%G zho
%F hao-etal-2022-ji
%X “基于信息论的言语产出研究发现携带信息量越大的语言单位,其语音信号越容易被强化。目前的相关研究主要通过自信息的方式衡量语言单位信息量,但该方法难以对长距离的上下文语境进行建模。本研究引入基于预训练语言模型GPT-2和文本-拼音互信息的语言单位信息量衡量方式,考察汉语的单词、韵母和声调信息量对语音产出的韵律特征的影响。研究结果显示汉语中单词和韵母信息量更大时,其韵律特征倾向于被增强,证明了我们提出的方法是有效的。其中信息量效应在音长特征上相比音高和音强特征更显著。”
%U https://aclanthology.org/2022.ccl-1.5/
%P 46-55
Markdown (Informal)
[基于GPT-2和互信息的语言单位信息量对韵律特征的影响(Prosodic Effects of Speech Unit’s Information Based on GPT-2 and Mutual Information)](https://aclanthology.org/2022.ccl-1.5/) (Hao et al., CCL 2022)
ACL