基于情感增强非参数模型的社交媒体观点聚类(A Sentiment Enhanced Nonparametric Model for Social Media Opinion Clustering)

Kan Liu (刘勘), Yu Chen (陈昱), Jiarui He (何佳瑞)


Abstract
“本文旨在使用文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现网民群体所持有的不同立场。针对社交媒体文本模式复杂与情感丰富等特点,本文提出使用情感分布增强方法改进现有的非参数短文本聚类算法,以高斯分布建模文本情感,捕获文本情感特征的同时能够自动确定聚类簇数量并实现观点聚类。在公开数据集上的实验显示,该方法在多项聚类指标上取得了超越现有模型的聚类表现,并在主观性较强的数据集中具有更显著的优势。”
Anthology ID:
2022.ccl-1.64
Volume:
Proceedings of the 21st Chinese National Conference on Computational Linguistics
Month:
October
Year:
2022
Address:
Nanchang, China
Editors:
Maosong Sun (孙茂松), Yang Liu (刘洋), Wanxiang Che (车万翔), Yang Feng (冯洋), Xipeng Qiu (邱锡鹏), Gaoqi Rao (饶高琦), Yubo Chen (陈玉博)
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
716–727
Language:
Chinese
URL:
https://aclanthology.org/2022.ccl-1.64
DOI:
Bibkey:
Cite (ACL):
Kan Liu, Yu Chen, and Jiarui He. 2022. 基于情感增强非参数模型的社交媒体观点聚类(A Sentiment Enhanced Nonparametric Model for Social Media Opinion Clustering). In Proceedings of the 21st Chinese National Conference on Computational Linguistics, pages 716–727, Nanchang, China. Chinese Information Processing Society of China.
Cite (Informal):
基于情感增强非参数模型的社交媒体观点聚类(A Sentiment Enhanced Nonparametric Model for Social Media Opinion Clustering) (Liu et al., CCL 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.ccl-1.64.pdf