Using Extracted Emotion Cause to Improve Content-Relevance for Empathetic Conversation Generation

Zou Minghui, Pan Rui, Zhang Sai, Zhang Xiaowang


Abstract
“Empathetic conversation generation intends to endow the open-domain conversation model with the capability for understanding, interpreting, and expressing emotion. Humans express not only their emotional state but also the stimulus that caused the emotion, i.e., emotion cause, during a conversation. Most existing approaches focus on emotion modeling, emotion recognition and prediction, and emotion fusion generation, ignoring the critical aspect of the emotion cause, which results in generating responses with irrelevant content. Emotion cause can help the model understand the user’s emotion and make the generated responses more content-relevant. However, using the emotion cause to enhance empathetic conversation generation is challenging. Firstly, the model needs to accurately identify the emotion cause without large-scale labeled data. Second, the model needs to effectively integrate the emotion cause into the generation process. To this end, we present an emotion cause extractor using a semi-supervised training method and an empathetic conversation generator using a biased self-attention mechanism to overcome these two issues. Experimental results indicate that our proposed emotion cause extractor improves recall scores markedly compared to the baselines, and the proposed empathetic conversation generator has superior performance and improves the content-relevance of generated responses.”
Anthology ID:
2022.ccl-1.72
Volume:
Proceedings of the 21st Chinese National Conference on Computational Linguistics
Month:
October
Year:
2022
Address:
Nanchang, China
Editors:
Maosong Sun (孙茂松), Yang Liu (刘洋), Wanxiang Che (车万翔), Yang Feng (冯洋), Xipeng Qiu (邱锡鹏), Gaoqi Rao (饶高琦), Yubo Chen (陈玉博)
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
811–823
Language:
English
URL:
https://aclanthology.org/2022.ccl-1.72
DOI:
Bibkey:
Cite (ACL):
Zou Minghui, Pan Rui, Zhang Sai, and Zhang Xiaowang. 2022. Using Extracted Emotion Cause to Improve Content-Relevance for Empathetic Conversation Generation. In Proceedings of the 21st Chinese National Conference on Computational Linguistics, pages 811–823, Nanchang, China. Chinese Information Processing Society of China.
Cite (Informal):
Using Extracted Emotion Cause to Improve Content-Relevance for Empathetic Conversation Generation (Minghui et al., CCL 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.ccl-1.72.pdf
Data
EmoCause