@inproceedings{guoding-etal-2022-spacl,
title = "{SPACL}: Shared-Private Architecture based on Contrastive Learning for Multi-domain Text Classification",
author = "Guoding, Xiong and
Yongmei, Zhou and
Deheng, Wang and
Zhouhao, Ouyang",
editor = "Sun, Maosong and
Liu, Yang and
Che, Wanxiang and
Feng, Yang and
Qiu, Xipeng and
Rao, Gaoqi and
Chen, Yubo",
booktitle = "Proceedings of the 21st Chinese National Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Nanchang, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2022.ccl-1.84/",
pages = "958--965",
language = "eng",
abstract = "{\textquotedblleft}With the development of deep learning in recent years, text classification research has achieved remarkable results. However, text classification task often requires a large amount of annotated data, and data in different fields often force the model to learn different knowledge. It is often difficult for models to distinguish data labeled in different domains. Sometimes data from different domains can even damage the classification ability of the model and reduce the overall performance of the model. To address these issues, we propose a shared-private architecture based on contrastive learning for multi-domain text classification which can improve both the accuracy and robustness of classifiers. Extensive experiments are conducted on two public datasets. The results of experiments show that the our approach achieves the state-of-the-art performance in multi-domain text classification.{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guoding-etal-2022-spacl">
<titleInfo>
<title>SPACL: Shared-Private Architecture based on Contrastive Learning for Multi-domain Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiong</namePart>
<namePart type="family">Guoding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhou</namePart>
<namePart type="family">Yongmei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Deheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ouyang</namePart>
<namePart type="family">Zhouhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Nanchang, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“With the development of deep learning in recent years, text classification research has achieved remarkable results. However, text classification task often requires a large amount of annotated data, and data in different fields often force the model to learn different knowledge. It is often difficult for models to distinguish data labeled in different domains. Sometimes data from different domains can even damage the classification ability of the model and reduce the overall performance of the model. To address these issues, we propose a shared-private architecture based on contrastive learning for multi-domain text classification which can improve both the accuracy and robustness of classifiers. Extensive experiments are conducted on two public datasets. The results of experiments show that the our approach achieves the state-of-the-art performance in multi-domain text classification.”</abstract>
<identifier type="citekey">guoding-etal-2022-spacl</identifier>
<location>
<url>https://aclanthology.org/2022.ccl-1.84/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>958</start>
<end>965</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SPACL: Shared-Private Architecture based on Contrastive Learning for Multi-domain Text Classification
%A Guoding, Xiong
%A Yongmei, Zhou
%A Deheng, Wang
%A Zhouhao, Ouyang
%Y Sun, Maosong
%Y Liu, Yang
%Y Che, Wanxiang
%Y Feng, Yang
%Y Qiu, Xipeng
%Y Rao, Gaoqi
%Y Chen, Yubo
%S Proceedings of the 21st Chinese National Conference on Computational Linguistics
%D 2022
%8 October
%I Chinese Information Processing Society of China
%C Nanchang, China
%G eng
%F guoding-etal-2022-spacl
%X “With the development of deep learning in recent years, text classification research has achieved remarkable results. However, text classification task often requires a large amount of annotated data, and data in different fields often force the model to learn different knowledge. It is often difficult for models to distinguish data labeled in different domains. Sometimes data from different domains can even damage the classification ability of the model and reduce the overall performance of the model. To address these issues, we propose a shared-private architecture based on contrastive learning for multi-domain text classification which can improve both the accuracy and robustness of classifiers. Extensive experiments are conducted on two public datasets. The results of experiments show that the our approach achieves the state-of-the-art performance in multi-domain text classification.”
%U https://aclanthology.org/2022.ccl-1.84/
%P 958-965
Markdown (Informal)
[SPACL: Shared-Private Architecture based on Contrastive Learning for Multi-domain Text Classification](https://aclanthology.org/2022.ccl-1.84/) (Guoding et al., CCL 2022)
ACL