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To achieve lifelong language learning, pseudo-rehearsal methods leverage samples generated from
a language model to refresh the knowledge of previously learned tasks. Without proper controls,
however, these methods could fail to retain the knowledge of complex tasks with longer texts
since most of the generated samples are low in quality. To overcome the problem, we propose
three specific contributions. First, we utilize double language models, each of which specializes
in a specific part of the input, to produce high-quality pseudo samples. Second, we reduce
the number of parameters used by applying adapter modules to enhance training efficiency.
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Third, we further improve the overall quality of pseudo samples using temporal ensembling and
sample regeneration. The results show that our framework achieves significant improvement over
baselines on multiple task sequences. Also, our pseudo sample analysis reveals helpful insights
for designing even better pseudo-rehearsal methods in the future.

1. Introduction

Lifelong Learning (LL), or continual learning, is a machine learning paradigm that aims
to emulate the learning process of biological intelligence (Parisi et al. 2019). The ultimate
goal is to create a learner or agent capable of reusing and refining its knowledge while
learning sequentially across potentially infinitely incoming tasks. However, current
machine learning models are trained in an isolated environment (Chen and Liu 2016)
where all data is assumed to be given during the training phase. When deployed in
real-life environments, models suffer from performance drop during their lifetimes due
to the non-stationary data distribution and concept drift (Schlimmer and Granger 1986).
Attempting to naively subject a machine learning model to the LL setting is not practical
due to a phenomenon called catastrophic forgetting (CF) (McCloskey and Cohen 1989),
where gradient-based models completely forget all previous knowledge in favor of new
knowledge.

Over the years, numerous approaches have been proposed to deal with CF; nev-
ertheless, a significant portion of them targets the computer vision or robotics domain
(Biesialska, Biesialska, and Costa-jussà 2020). As for lifelong language learning (LLL),
the amount of research is relatively scant, with most being task-specific (Chen, Ma, and
Liu 2018; Kutuzov et al. 2018). Recently, Sun, Ho, and Lee (2020) introduced a general
LLL framework, called LAMOL, capable of solving any NLP task with a single language
model (LM). This is achieved by formatting any input into a question-answering (QA)
format (McCann et al. 2018). By exploiting the generative power of a pre-trained LM,
LAMOL generates pseudo samples from previous tasks and utilizes them to train the
model together with examples from a new task to alleviate CF. This also removes the
need to store real samples from previous tasks. Their results show that LAMOL was
able to outperform several existing LLL methods by a large margin and is only 2%
below multitask training in terms of accuracy.

Although LAMOL was able to achieve good results in various datasets, LAMOL
relies solely on these generated samples to alleviate CF. When trained on datasets with
long texts, the LM struggles to properly capture the QA structure of input examples,
which leads to various undesirable characteristics of the generated pseudo samples,
namely: wrong format, uninformative, wrong task, and wrong answer. This is depicted
in Table 1 (bottom) and will be explained in Section 2.2. As a result, LAMOL cannot
effectively prevent CF in this situation.

Hence, in this article, we address this problem by introducing a novel Double LM
framework. With an additional LM, we decompose LAMOL’s learning objective into
two subtasks and apply each LM to solve each subtask. Consequently, this training
paradigm allows the pseudo sample generation process to be more controllable and in
turn increases the quality of the generated pseudo samples. Additionally, to lower the
resource requirements imposed by the added LM, we apply adapter modules (Houlsby
et al. 2019) to imitate the function of the second LM. Finally, we also propose enhancing
pseudo sample quality with a semi-supervised learning technique (i.e., temporal ensem-
bling) and by detecting and reducing the number of uninformative pseudo samples.
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Table 1
Top: The depiction of ideal characteristics of pseudo samples with explanations below the
samples. Bottom: The depiction of various undesirable characteristics of pseudo samples with
explanations below the samples. [SEP] and [ANS] are special tokens indicating the structure of
the samples, while [MOVIE] and [SCIFACT] are task-specific tokens telling the language model
to generate pseudo samples of the corresponding tasks.

High-Quality Pseudo Samples

Correct Format [MOVIE] this movie is good [SEP] what is the sentiment of this review? [ANS] Negative
The sample has three parts in the right order (context, question, answer) with the correct special tokens.

Informative [SCIFACT] The Drosophila lymph gland is a haematopoietic organ in which . . .
The sample is coherent and meaningful.

Correct Task [SCIFACT] The present study was conducted by . . .
Given a task-specific token, a sample is generated accordingly.

Correct Answer [MOVIE] this movie is good [SEP] what is the sentiment of this review? [ANS] Positive
The answer of the sample corresponds with the context and the question.

Low-Quality Pseudo Samples
Wrong Format [MOVIE] this movie is good [ANS] Negative

The format is incorrect due to the missing question part.
Uninformative [SCIFACT] of the [SEP] function of a function of the function of an element of a function of . . .

The generated context is uninformative and incomprehensible.
Wrong Task [MOVIE] The present study was conducted by . . .

The generated context seems to be from the SciFact task, contradicting the task token [MOVIE].
Wrong Answer [MOVIE] this movie is good [SEP] what is the sentiment of this review? [ANS] Negative

The answer of the sample is incorrect according to the context and the question.

In our experiments, we evaluated our proposed solutions on two sets of complex
tasks up to five tasks long. We show that our solutions are able to improve upon vanilla
LAMOL with statistical significance in both sets of tasks, gaining up to 16.27% average
accuracy and is only 0.7% below from using real examples for rehearsal.

To sum up, our contributions are as follows:

• Introducing a new pseudo-rehearsal based LLL framework that is more
suitable for datasets with longer texts.

• Utilizing adapter modules (Houlsby et al. 2019) to reduce parameters and
computation requirements of our new scheme.

• Further improving pseudo samples quality using a semi-supervised
learning technique and re-generation strategy.

• Analyzing pseudo samples and providing insights of the effects of
pseudo samples on the final lifelong learning performance.

The rest of this article is structured as follows. Section 2 provides background
and related work that are relevant to our proposed solutions and baselines used in
the experiments. Section 3 introduces the methodology of our work and explains the
pseudo sample analysis process we conducted. Section 4 describes the set-up of our
experiments where the results and discussion are then presented in Section 5. Finally,
Section 6 concludes our paper.
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2. Background and Related Work

In this section, we briefly introduce existing works in the field of lifelong learning as well
as LAMOL and Adapter Modules—components upon which our proposed solutions
build.

2.1 Lifelong Learning

Lifelong learning is one of the most challenging machine learning paradigms. Until
now, researchers have introduced many methods to alleviate the problem of CF, all of
which can be broadly classified into three main approaches:

• Architectural-based approach mimics the modular nature of the
human brain and dynamically introduces task-specific parameters to
accommodate new tasks (Rusu et al. 2016; Wen, Tran, and Ba 2020). This
group of methods can retain perfect knowledge of past tasks; however,
they suffer from the constantly growing parameters.

• Regularization-based approach utilizes a regularization term that
promotes knowledge consolidation and prevents large changes to
parameters deemed crucial for previous tasks (Kirkpatrick et al. 2017;
Aljundi et al. 2017). These methods do not require additional parameters
or storing past data. Nevertheless, with a limited number of parameters,
new knowledge may eventually overwrite previously learned
knowledge.

• Rehearsal-based approach relies on a set of stored data that is replayed
during the learning phase of a new task (Lopez-Paz and Ranzato 2017;
de Masson d’Autume et al. 2019). To avoid relying on stored past data,
pseudo-rehearsal methods instead utilize a generative model capable of
creating potentially unlimited pseudo training data. LAMOL and our
work fall into this category.

In the context of LLL, rehearsal-based approaches have been shown to be the most
promising group of methods, outperforming notable methods of other approaches such
as EWC (Kirkpatrick et al. 2017) and MAS (Aljundi et al. 2017) on various NLP tasks
(Sun, Ho, and Lee 2020; Wang et al. 2020; Han et al. 2020; Sprechmann et al. 2018; Sun
et al. 2020). Similarly, pseudo-rehearsal methods have been receiving more attention
with the advancement of language models (Merity, Keskar, and Socher 2017; Radford
et al. 2019). Complex data distributions can be modeled more accurately, leading to the
increasing quality of generated data. This in turn improves the performance of pseudo-
rehearsal methods. However, in most cases, replaying real data still outperforms syn-
thetic data replay. This is due to the sub-optimal quality of the pseudo data. Multiple
work has been proposed in order to address the problem in the computer vision domain.
Solinas et al. (2021) proposed storing a small amount of real data as seeds for generating
pseudo data using a re-injection sampling procedure (Ans and Rousset 1997). They
were able to outperform strong rehearsal-approach baselines such as experience replay
(Chaudhry et al. 2019b). Silver and Mahfuz (2020) generated pseudo samples using a
stack of Restricted Boltzmann Machine (RBM) (Hinton 2012) and select only those that
most adhere to training data distribution. Only pseudo samples with reconstruction
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error from the trained RBM lower the mean squared error of all generated samples
were utilized, while the rest were discarded. Consequently, by training the model
with the remaining pseudo samples, they were able to match the performance of the
model trained with real examples. In contrast, Pomponi, Scardapane, and Uncini (2020)
approached the problem in the embedding space. With a generative model composed
of a normalizing flow (Papamakarios et al. 2021), they were able to achieve significantly
less CF when compared with strong regularization-approach and rehearsal-approach
baselines. To the best of our knowledge, our work is the first attempt to explicitly
improve the quality of pseudo samples in the NLP domain, especially when the tasks
to be learned contain long texts but with insufficient training data.

2.2 LAMOL

Inspired by Shin et al. (2017), LAMOL (Sun, Ho, and Lee 2020) leverages a single GPT2
language model (LM) (Radford et al. 2019) to prevent CF by utilizing the innate gener-
ative capability of the LM to create pseudo samples that are later learned jointly with
data from a new task. By following the decaNLP (McCann et al. 2018) data formatting
protocol, where every NLP task can be converted into a QA format, LAMOL is able to
tackle various NLP problems without requiring task-specific modules. Particularly, each
example is converted to the following format: [GEN] context [SEP] question [ANS]

answer, where [GEN], [SEP], and [ANS] are additional special tokens.
During training on a particular task τi, the LM is optimized on two objectives: L =

LQA + λLLM, where LQA and LLM refer to the QA loss and the LM loss, respectively, and
λ is the weight of the auxiliary LM loss. Specifically, the GPT2 model learns to generate
the correct answer (via the QA loss) while also trying to capture the distribution of given
examples in order to better generate pseudo samples as an auxiliary task (via the LM
loss). This is illustrated in Figure 1 (left). Note that they use categorical cross entropy for
both types of losses. Then, before starting training on the next task τi+1, LAMOL uses
the LM to generate pseudo samples of all previous tasks τt for t = 1, . . . , i. Given a [GEN]
token, the LM samples from the learned distributions until it outputs an [EOS] token. To
prevent the LM from generating pseudo samples only for the most recent tasks, LAMOL
adds a task-specific token for each task τi. Task-specific tokens can be utilized in place
of the GEN token to inform the LM to generate pseudo samples from a particular task.
A total of γ|τi+1| pseudo samples are generated, divided equally into γ

i |τi+1| samples
for each previous task, where γ is a hyperparameter. Finally, the LM model learns from
the mixture of new examples of task τi+1 and pseudo samples of previous tasks.

Even though pre-trained LMs (such as GPT2) have shown impressive capabilities
in learning various tasks, they require a large amount of training examples to con-
verge properly. The problem is even more prevalent in complex tasks like language
modeling. In real-life settings, labelled examples may be scarce, in which case the LM
would struggle to appropriately capture the data characteristics, causing the generated
pseudo samples to possibly be malformed. Because LAMOL formats data according
to decaNLP, pseudo samples are required to be in the same form. Any pseudo sample
with an incorrect format will be discarded and not used in training. In our experiments,
we have observed that most pseudo samples generated from LAMOL do not have
the correct format. Additionally, there are also many undesirable characteristics of the
generated pseudo samples present. These include: (1) Wrong format: Generated pseudo
samples do not conform to the QA format. (2) Uninformative: Many pseudo samples
contain non-sensical texts. (3) Wrong Task: Pseudo samples generated do not match the
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[SEP]
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Figure 1
Left: Training step of LAMOL. In a single optimization step, a single language model is trained
on the QA task (upper) and the LM task (lower). Right: Our framework utilizes two language
models that focus on different parts of the input. The first LM is optimized on the QA task
and the context generation task, while the second LM is optimized solely on the question
generation task.

task-specific token specified. (4) Wrong Answer: Incorrect answers are generated for
some pseudo samples. These problems are depicted in Table 1.

Consequently, without an adequate amount of usable pseudo samples, LAMOL
loses the ability to prevent catastrophic forgetting and is comparable with only sequen-
tial fine-tuning.

2.3 Other Rehearsal Approaches

Research in rehearsal methods for LLL has seen an increase in traction over the last few
years along with the advancement in LMs (Biesialska, Biesialska, and Costa-jussà 2020).
They can be loosely categorized into two groups: methods that restrain themselves
from making more than a single pass through the training data, and those that do not.
Proponents of the former believe that this constraint constitutes a more realistic setting
than that of the latter. We selected one recent method from each group as additional
baselines in our experiments so we briefly describe them below.

2.3.1 Lifelong Language Knowledge Distillation (LLKD). Chuang, Su, and Chen (2020)
utilize knowledge distillation (Hinton, Vinyals, and Dean 2015) in order to improve
the LL performance of LAMOL. For each new incoming task, LLKD trains a disposable
teacher model to compress the knowledge of the task and transfer it to an equivalently
sized LL model via knowledge distillation. The soft supervision of the teacher model
offers a more informative learning signal for the student model as opposed to the hard
targets such as one-hot encoding. This can help the LL student model adapt to new tasks
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with more smoothness and reduce the interference of previous knowledge (Hou et al.
2018). According to the experiments in Chuang, Su, and Chen (2020), LLKD outper-
forms LAMOL on both classification tasks and sequence generation tasks. Nevertheless,
when the teacher models fail to fully converge during training, the error from these
models’ estimations is amplified as the knowledge is transferred to the student model.

2.3.2 Meta Lifelong Learning. The ultimate goal of LL is to train a truly general model
capable of solving all problems. Similarly, meta learning aims to find an initialization
point for a model that is able to learn new tasks quickly. Therefore, multiple authors
have proposed using different meta learning strategies in conjunction with standard
lifelong learning techniques such as replaying past examples to solve the problem of
LL. Research in this area considers a different problem set-up. Usually, the proposed
methods limit themselves to making only one pass over the training data (i.e., one
epoch) and without requiring task identifiers (e.g., task-specific token in LAMOL). One
recent work in meta lifelong learning is Holla et al. (2020). They extend previous works
OML (Javed and White 2019) and ANML (Beaulieu et al. 2020) with Experience Replay
(ER) buffer, an episodic memory that randomly stores training examples in order to
replay them later during training. Online aware meta learning (OML) trains a model on
a meta-objective that attempts to learn sparse representations that mitigate forgetting,
enabling OML to significantly outperform previous works. To improve the knowledge
retention ability of the OML model, ANML introduces a parallel network called the
neuromodulatory (NM) network that gates the activation of the prediction learning
network (PLN; i.e., the OML model). The NM enables the ability to selectively suppress
or allow, to various degrees, gradient updates to the PLN. In their experiments on large
text classification datasets, up to 100k examples each, OML-ER and ANML-ER are able
to rival LAMOL in terms of performance with only 1% of training samples replayed
during training. Due to a slightly better performance in text classification tasks, we
selected ANML-ER as an additional baseline.

2.4 Adapter Modules

Fine-tuning large pre-trained language models has pushed the limits of performance
on various NLP tasks; nevertheless, it is highly inefficient because the whole model has
to be fine-tuned individually for each task. To alleviate this issue, Houlsby et al. (2019)
introduced adapter modules as an alternative paradigm for transfer learning.

Basically, the adapters (each of which is composed of two feedforward layers and a
non-linear activation function) are used to adapt the content of each transformer block
of the base pre-trained model. During the fine-tuning step, only the adapters are fine-
tuned, so this can increase the training efficiency, thanks to a dramatically fewer number
of parameters in the adapters, namely, only 0.5% to 8% of conventional large pre-trained
models such as GPT2. The resulting model can achieve performance on par with fine-
tuning the full model while also gaining significant speed-up.

In the context of our work, to reduce additional computational requirements caused
by Double LM, we also propose using a single LM with adapter modules that can also
achieve similar performance as the Double LM.

3. Methodology

In this section, we explain our proposed solutions. Section 3.1 presents the Double
LM framework where an additional LM is leveraged to improve the quality of pseudo
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samples. Section 3.2 details the integration of adapter modules into our framework. We
also describe the procedure of our pseudo sample analysis in Section 3.3. Finally, we
detail our pseudo sample enhancement strategies in Section 3.4.

3.1 Double LM

Instead of allocating the model’s learning capacity to model the input structure in addi-
tion to predicting the output, we propose decoupling the auxiliary language modeling
task in LAMOL into two separate learning problems and applying a language model to
solve each problem.

Training. Given that the required format of each input is [GEN] context [SEP] ques-

tion [ANS] answer, in our framework, each LM is optimized on different part(s) of
input. The problem set-up is shown in Figure 1 (right). The first LM would take the main
responsibility of learning the QA task, that is, predicting an answer given a context and
a question, and learning to model the context part of an example. Meanwhile, the other
LM would learn to generate a question given an input context.

More formally, let L(Y,θLMi (X)) denote the cross entropy loss of LMi with param-
eters θ on an input X with a target Y. The objective function of each LM would be
defined as:

LLM1 = L(YQA,θLM1 (X)) + λL(Ycontext,θLM1 (X)) (1)

LLM2 = L(Yquestion,θLM2 (X)) (2)

Generation. By having two LMs, we can exactly control the pseudo sample generation
process so that it conforms to the predefined format by the following steps:

1. First, LM1 is utilized to generate the context part of the pseudo sample
given a task-specific token indicating which task the generated context
should belong to.

2. Second, a [SEP] token is appended to the previous output, and then LM2
generates an appropriate question according to the given context.

3. Finally, an [ANS] token is appended to the previous output, and then
LM1 takes in the context and the question and predicts the answer as it
would when training.

The process is illustrated in Figure 2 (bottom). As a result, the output pseudo
samples are more likely to be in the correct format and more realistically imitate real
training examples. Freeing the LM from learning the QA structure of examples also
relaxes the complexity of the language modeling task, leading to better pseudo samples.

3.2 Adapter

Training another instance of GPT2 LM as in Section 3.1 imposes significant additional
memory and computation requirements. Thus, we also propose to instead use the
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[SEP]
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[SEP]
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Figure 2
Top: Pseudo sample generation step of LAMOL. Given a [GEN] token, a single LM generates the
whole sample. Bottom: Given a [GEN] token, LM1 is utilized to generate a context. Next, given
the context, LM2 generates the corresponding question. Finally, given the context and the
question, LM1 generates an appropriate answer to complete the pseudo sample. Note that, for
both LAMOL and our work, [GEN] will be replaced by a task-specific token to indicate the
desired task of the generated pseudo sample.

adapter modules to mimic the function of the additional GPT2 model as a remedy to
the problem.

In our framework, the adapters are added after the LM1 has been trained on
Equation (1). Because the adapter modules can utilize the information learned by the
underlying model, we believe that it can effectively function as well as LM2. Then, LM1,
which can now be referred to as the base model, is kept frozen, while we train the added
adapters using Equation (2).

Due to the modular nature of the adapters, we can choose to ignore or “deactivate”
the added adapters during the forward pass. By doing so, we get our base model LM1
back. Therefore, to generate a pseudo sample, we start by deactivating the adapter mod-
ules and let the base model generate the context part. Next, we reactivate the adapters
and feed the generated context into the model to get the corresponding question. Lastly,
the adapters are deactivated once again, and now we utilize the base model to generate
the answer to the pseudo sample.

3.3 Pseudo Sample Analysis

The performance of rehearsal-based LL approaches has been shown to rely mainly on
the preserved samples. Multiple sample selection strategies have been devised in an
attempt to choose data that can better represent previous distributions (Ramalho and
Garnelo 2019; Wang et al. 2020; Toneva et al. 2019). However, for pseudo-rehearsal
approaches, the problem is more complex due to the sub-optimal quality of generated
pseudo samples. Therefore, in addition to the proposed framework, we conduct an
analysis of pseudo samples in order to understand the effect of multiple aspects of
pseudo sample quality on the final LL performance of pseudo-rehearsal methods.

In the analysis, pseudo samples are checked for four aspects of quality: (1) format
correctness, (2) informativeness, (3) task correctness, and (4) answer correctness. The
process is illustrated in Figure 3. First, we check if a pseudo sample conforms to the
correct format. This is done by simply checking for three special tokens and their order.
A pseudo sample has the correct format if it has a task-specific token, a [SEP] token, and
an [ANS] token, in this specific order. The ones with an incorrect format will be classified
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Figure 3
The process of our pseudo sample analysis. The color orange in each decision diamond refers to
rule-based decisions while the color purple means decisions are made by classifiers.

as “Wrong Format.” Next, pseudo samples with the correct format are checked whether
they are informative or not. This process depends on the nature of the datasets used. We
used a simple criterion: If the context part of a pseudo sample has less than 50 unique
tokens, it is considered “Uninformative.” Then we checked whether the content of each
generated sample matches its task token or not. To do so, we trained BERT (Devlin
et al. 2019) to classify the generated pseudo samples into their corresponding tasks.
Note that we train this BERT model in the standard supervised learning fashion (not
lifelong learning). To put it simply, it was trained using the training data from all
the tasks. This model achieved perfect accuracy on the test data, and it was used
for the purpose of analyzing the quality of pseudo samples only. If the content of a
pseudo sample does not match its task-specific token, then it is categorized as “Wrong
Task.” Finally, we checked for the answer correctness by using a fine-tuned RoBERTa
(Liu et al. 2019) model. We opted for RoBERTa due to its superior performance over
BERT in predicting the correct answers. If the RoBERTa model agrees with the answer of
the generated pseudo sample, it is considered “Correct Answer”; otherwise it is classi-
fied as “Wrong Answer.”1 As with the previous step, we fine-tuned one RoBERTa model
per task and use all the fine-tuned models to analyze the quality of pseudo samples only.

3.4 Further Improving Pseudo Sample Quality

After analyzing the pseudo samples of our framework, we further attempted to enhance
their overall quality in practice. We chose to improve two of the aspects mentioned in
the previous section: answer correctness and uninformativeness.

To reduce the number of uninformative pseudo samples, we propose a simple filter-
ing strategy, nicknamed ReGen. Pseudo samples that have less than 50 unique tokens
in the context part, as in Section 3.3, are re-generated until we obtain all informative
samples or reach the computation limit (set as ten iterations in our experiments).

To improve the pseudo sample answer correctness, we propose using a popular
semi-supervised learning technique called Temporal Ensembling (Laine and Aila 2017).
During the generation process, two models from the last two epochs of training are
utilized to vote on answers for pseudo samples. We only keep pseudo samples on which
the two models agreed on an answer, whereas the rest are replaced with a new batch of
pseudo samples. This is based on the assumption that answers that are not stable even
when reaching the end of the training are not likely to be reliable answers.

1 It is important to note that “Correct Answer” and “Wrong Answer” are not definitely correct and wrong,
respectively. This is because the fine-tuned RoBERTa models we used are not perfect. The accuracy of the
models for the BoolQ, Movie, and SciFact tasks are 80.33%, 99.5%, and 77.66%, respectively.

828



Kanwatchara et al. Enhancing LLL by Improving Pseudo-Sample Generation

4. Experimental Set-up

This section reports our experimental set-up. Section 4.1 contains the details of datasets
and metrics used in the experiments. Section 4.2 describes the implementation details,
hyperparameters, and the methods to be compared.

4.1 Datasets

We performed our experiments on five datasets, selected due to their high complexity
and small size. The details of all datasets are listed below and data statistics are in
Table 2. In Table 3, we detailed the QA components for each task. Note that both
LAMOL and our framework do not make use of the validation sets.

• BoolQ (Clark et al. 2019): a dataset containing yes/no questions
generated from selected Wikipedia passages.

• Movie Reviews (Zaidan, Eisner, and Piatko 2008): a dataset that includes
movie reviews with positive/negative sentiment labels.

• SciFact (Wadden et al. 2020): a dataset of scientific abstracts paired with
claims written by experts. The objective is to identify whether the claim is
supported by the given documents.

• Fever (Thorne et al. 2018): Fact Extraction and VERification is a dataset
consisting of claims and textual sources, that is, documents. The task is to
verify if each claim is supported by a given document. To make the task
more challenging, we randomly sampled data from the dataset so that
the size is comparable with other datasets in our experiment.

• TriviaQA (Joshi et al. 2017): a realistic question-answering dataset
extracted from Wikipedia and the Web. In this paper, we used only
examples from the Web section. As with Fever, we also randomly
sampled data from this dataset.

We consider the following task sequences in our experiment: (1) Short sequence:
all permutations of tasks BoolQ, Movie, and SciFact; and (2) Long sequence: two
permutations of all the five tasks, from the largest to the smallest tasks and vice versa.

For classification tasks (the first four datasets), we used EM, or exact match between
texts, as the metric. This is because GPT2 is a generative model. However, because of

Table 2
Summary of datasets, their sizes, and the corresponding metrics. EM is an exact match between
texts while nF1 represents normalized F1 score.

Dataset # Train # Test Metric

BoolQ 6,363 2,817

EMFever 7,390 6,111
Movie 1,600 200
SciFact 405 188

TriviaQA 3,005 1,207 nF1
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Table 3
Each component of the QA structure of each dataset. * Note that, unlike other datasets in our
experiments, Movie is a single-text classification task; therefore, the question is manually added
and reused across the task. ** We prepend the task name to the answers to encourage the model
to learn the difference between the two tasks.

Dataset Context Question Answer

BoolQ Passage Question True/False
Fever Doc. Claim Supports/Refutes**
Movie Passage Question* Positive/Negative
SciFact Doc. Claim Supports/Refutes**

TriviaQA Doc. Question Answer

the nature of text classification, the percentage of exact matches can also be seen as the
accuracy of the model. For the TriviaQA dataset, however, we used the normalized2 F1
score. Because the scores for all metrics lie between 0 and 1, we can simply average the
scores across different metrics.

To quantify the amount of catastrophic forgetting or lack thereof, we calculated
the normalized area under the accuracy curve (NAAC), as inspired by Chaudhry et al.
(2019a). Formally, for every epoch during training, we evaluated the trained model and
obtain an average accuracy Acci over all previously learned tasks:

Acci =
1
τ

τ∑
t=1

ai,t (3)

where ai,t is the test accuracy of the model on task t at the current epoch i, and τ is the
total number of tasks the model has learned at the time of the evaluation.

NAAC can be defined as:

NAAC =

∫ n

1
Acci di (4)

where n is the total number of epochs the model is trained. The NAAC score lies
between 0 and 1. It will be higher for the method that is more effective at preventing CF.
Note that this score is order-dependent. In other words, the scores cannot be compared
across different task orders.

4.2 Implementation Details

In all of our experiments, the best LAMOL configuration according to Sun, Ho, and Lee
(2020) was used. In particular, the sampling ratio γ is set to 0.2. Also, task-specific tokens
are used instead of the [GEN] token to generate pseudo-samples of a specific task.

We utilized the small GPT2 model (Radford et al. 2019) as the language model for all
methods except ANML-ER, for which we used BERT-base (Devlin et al. 2019) as done
in their original paper. We applied greedy decoding during inference. For LLKD, the

2 Note that the normalization refers to text normalization, i.e., lower-casing, article removal, when
comparing the model output and the ground truth answer from the test set.
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Table 4
Hyperparameters used in our experiments.

Hyperparameter Value
Training hyperparameters

Training epochs per task 5
Optimizer Adam
Adam epsilon 1.0× 10−4

Weight decay 0.01
Max gradient norm 1.0
Learning rate schedule warmup linear
Warmup ratio 0.005

LM-specific hyperparameters
Learning rate 6.25× 10−5

Top-k sampling k = 20
Adapters-specific hyperparameters

Learning rate 1× 10−4

Reduction factor 16
Non-linearity ReLu

LLKD-specific hyperparameters
KD Temperature 2

distillation strategy used is the soft sequence-level strategy. Meanwhile, for ANML-ER,
we followed the default hyperparameters introduced in Holla et al. (2020), with two
exceptions. First, we modified the replay interval to 140 samples as opposed to 9,600 in
the original experiments of Holla et al. (2020). Second, the experience replay rate was
changed from 1% to 20%. We believe that the modified values make the comparison
fairer due to the drastic difference in data sizes and to compensate for the disadvantages
of meta learning in small datasets.3 The adapter module parameters are also kept at the
default values as proposed by Pfeiffer et al. (2020) with a reduction factor of 16. The
hyperparameters of both the LM and the adapters are listed in Table 4.

We used adapter-transformers4 for the implementation of the GPT2 LM and
adapters. For LLKD5 (Chuang, Su, and Chen 2020) and ANML-ER6 (Holla et al. 2020),
we used their publicly available implementations. For all task sequences, we ran all
methods three times with different random seeds and averaged the results. All of the
experiments were conducted on an NVIDIA DGX station.

We report the performance of our proposed solutions and compare them to the
baseline LAMOL and two external baselines: LLKD and ANML-ER. We also report
the results of LAMOLreal, which uses some real examples from previous tasks to train
the model and, therefore, guarantees the quality of examples used. The number of real
examples used by LAMOLreal equals the number of pseudo samples generated and used
by LAMOL. Additionally, we compared with the multitask learning set-up where the
GPT2 model was trained on real examples from all tasks at the same time. This is usually
considered the upper bound of LL methods.

3 The replay interval of 140 samples was chosen to keep the ratio of total number of training examples to
replay interval consistent with the original implementation. Meanwhile, the experience replay rate was
set equal to the LAMOL sampling ratio of 20%.

4 https://github.com/Adapter-Hub/adapter-transformers.
5 https://github.com/voidism/L2KD.
6 https://github.com/Nithin-Holla/MetaLifelongLanguage.
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Table 5
Accuracy of different methods, averaged over three random seeds. The scores are evaluated on the
models at the last epoch of the last task. Each column represents the order of tasks on which the
methods were trained. B, M, and S refer to BoolQ, Movie Reviews, and SciFact, respectively.
The Average and Std. columns refer to the average and standard deviation of the accuracy scores
for each row of the methods, respectively. R and T refer to ReGen and temporal ensembling,
respectively.

Methods BMS BSM MBS MSB SBM SMB Average Std.

Non-LL method
Sequential 47.85 36.91 28.20 19.51 18.91 31.74 30.52 10.99

Baselines. Section 2.2–2.3.2 & Section 5.1
LAMOL 64.53 35.48 66.79 60.76 52.02 54.40 55.67 11.41
LAMOLall 62.22 62.06 61.42 52.93 65.32 63.35 61.22 4.29
LLKD 53.41 32.01 40.74 18.97 40.48 40.12 37.62 11.43
ANML-ER 55.64 42.43 42.02 69.00 59.13 59.58 54.63 10.58

Proposed Framework. Section 3.1–3.2
Double LM 68.94 69.00 71.78 69.20 71.44 69.37 69.96 1.29
LM+Adapter 69.68 67.88 69.73 69.19 69.00 71.23 69.45 1.10

With Additional Pseudo Sample Enhancement. Section 3.4
LM+Adapter+R 70.22 69.02 69.16 67.51 71.48 71.43 69.80 1.54
LM+Adapter+T 69.73 71.75 70.16 69.60 71.02 71.83 70.68 0.99
LM+Adapter+RT 71.28 70.53 70.30 70.09 71.45 73.62 71.21 1.30

LAMOLreal 69.07 71.97 70.84 72.31 74.13 73.32 71.94 1.80
Multitask 75.52

5. Results and Discussion

This section reports and discusses the experimental results. Specifically, Sections 5.1 and
5.2 report the LL performance in terms of average accuracy at the last epoch and NAAC
score, respectively. The former gives a general idea of the effectiveness of a method in
learning in the LL scenario while the latter mainly focuses on quantifying the amount
of CF over the course of training. Section 5.3 details the runtime of different methods in
the experiments. Section 5.4 shows the result of our pseudo sample analysis. This is then
followed by a comparative study of different variations of our proposed framework in
Section 5.5 and an additional discussion on the effect of input length in Section 5.6.

5.1 LL Performance

In this section, we report the average accuracy of our proposed methods and the
baselines on short and long sequence.

5.1.1 Short Sequence. We trained all methods on six permutations of three tasks: BoolQ
(B), Movie Reviews (M), and Scifact (S). The results are shown in Table 5.7

In task permutations BMS and MBS, LAMOL was able to generate sufficient
correctly formatted pseudo samples and hence was able to prevent total knowledge

7 As noted in Table 4, we trained each task for five epochs due to our resource limitation, as opposed to
nine epochs as in Sun, Ho, and Lee (2020). Still, we present the results of some selected methods from
Table 5, trained for nine epochs for each task, in Appendix A to enable comparison across papers.
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loss. Nevertheless, in the other permutations, we found that the majority of pseudo
samples generated from LAMOL do not have the correct format. As a result, LAMOL
showed almost complete forgetting of previous tasks, especially in the order BSM,
where LAMOL scored less than 1% correctness in both BoolQ and SciFact tasks at the
final epoch.

To highlight the problem of pseudo samples having the wrong format, we try
mitigating the problem of LAMOL by implementing an algorithm that heuristically
assigns an answer to all pseudo samples, regardless of the questions. In every pseudo
sample, the algorithm looks for the last [ANS] token of the generated pseudo sample
and replaces all tokens behind the [ANS] with a valid answer according to the task-
specific token. The answer is chosen according to the next-token probability of the first
token (after [ANS]) of all valid answers. When there is no [ANS] token, we added it at
the end of the pseudo sample and a random valid answer is then added. Finally, we
bypassed the format control of LAMOL to guarantee that all generated pseudo samples
were used. The result is shown in LAMOLall, where we were able to gain an average
of 5.55% improvement from LAMOL. Unsurprisingly, in task orders where LAMOL
was already able to generate decent pseudo samples (i.e., BMS and MBS), LAMOLall
introduced noise that destructively interfered with learned knowledge.

Considering other baselines, we found that LLKD performed significantly worse
than LAMOL on all task orders. It achieved only 37.62% average accuracy, 18.05% lower
than LAMOL (55.67%). As with LAMOL, the GPT2 model failed to properly learn
the structure of the training samples. Thus, it failed to prevent CF due to insufficient
usable pseudo samples. Because LLKD also utilizes GPT2 as teacher models, it similarly
suffered from the low-quality pseudo sample problem, albeit worse since the student
model was also required to learn from these teacher models.

In contrast, another baseline, ANML-ER, performed comparatively to LAMOL on
average, achieving only 54.63% average accuracy. Nevertheless, we found that a large
part of ANML-ER’s final performance can be attributed to the first task while it strug-
gled to converge on the final task. In contrast, in most task orders, LAMOL was unable
to prevent complete CF of the first task; however, it performed well on later tasks. This
is illustrated in Figure 4. A possible explanation for this is that the high replay rate
of real examples in ANML-ER resulted in a setting similar to a multitask set-up. This
gave the model enough time to converge on the prior tasks. For later tasks, since the
neuromodulatory (NM) network is trained using meta learning, it is possible that the
model did not converge on the meta objective when trained on small datasets such as
those in this experiment. This resulted in a significantly reduced learning capability;
therefore, ANML-ER was unable to converge on later tasks in a timely fashion. For
instance, in the task order MBS, it achieved 0% accuracy on the final task (SciFact task)
on all three random seeds.

With the ability to generate high-quality pseudo samples, our Double LM was
able to improve upon LAMOL by 14.29% average accuracy while also having only
1.29% standard deviation. As expected, LM+Adapter was able to perform on par with
Double LM on average, gaining 13.78% average accuracy over LAMOL and achieving
only 1.10% standard deviation. This suggests that the adapter modules successfully
mimicked the function of the additional GPT2 of Double LM. Additionally, according to
Figure 4, LM+Adapter successfully retained most of the learned knowledge while also
not struggling with learning later tasks, as opposed to LAMOL and ANML-ER.

Both of our variants were competitive with LAMOLreal (using real examples instead
of pseudo samples) in the orders BMS and MBS but slightly underperformed in the
other orders.
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Figure 4
The distribution of test scores of LAMOL, ANML-ER, and LM+Adapter at the last epoch.

Concerning the strategies proposed in Section 3.4, applying ReGen (R) to our
LM+Adapter (i.e., LM+Adapter+R) was able to provide an improvement, although
statistically insignificant, of 0.45% in terms of average accuracy. Meanwhile, by incorpo-
rating Temporal Ensembling (T) into our LM+Adapter, we were able to further increase
the performance of our framework by 1.13% (LM+Adapter+T) even though we did not
apply additional data augmentation as proposed by Laine and Aila (2017). Combining
these two strategies (LM+Adapter+RT) improves the performance of our LM+Adapter
with statistical significance (p-value of 0.004) by 1.76%, being even closer to LAMOLreal
with only a 0.73% difference in accuracy.

5.1.2 Long Sequence. Besides, we conducted an experiment on all five tasks sequentially
to further demonstrate our framework’s effectiveness in preventing CF. Due to the
limited computational resources, we only explored two orders: from the largest to the
smallest tasks (FBTMS) and vice versa (SMTBF). Note that ANML-ER cannot handle a
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Table 6
Performance of LLL models on five tasks, averaged over three random seeds.

Methods FBTMS SMTBF Average

LAMOL 57.01 44.32 50.67
LLKD 42.73 47.04 44.89
LM+Adapter 65.51 62.18 63.85
LM+Adapter+RT 66.03 67.74 66.88

LAMOLreal 70.95 71.83 71.39
Multitask 68.89

mixture of classification tasks and question-answering tasks. Therefore, it is excluded
from this part of the experiment.

As shown in Table 6, our framework greatly outperformed LAMOL in both orders.
Even though LAMOL was able to prevent catastrophic forgetting to an extent, the
superior quality of pseudo samples generated by our framework enabled the model
to retain significantly more knowledge and gain 13.18% average score. The combined
pseudo sample enhancement strategy (LM+Adapter+RT) also generalizes to a longer
sequence of tasks where we gained an additional 3.03% average score.

5.2 Quantifying Catastrophic Forgetting

In this section, we report the NAAC scores, introduced in Section 4.1, of all methods in
Table 5 except for ANML-ER, since it does not make use of task descriptors; therefore,
there is no indication as to when each task ends. The NAAC scores are reported in
Table 7.

Table 7
Normalized Area Under Accuracy Curve (NAAC) score of different methods, averaged over
three random seeds.

Methods BMS BSM MBS MSB SBM SMB Average

Non-LL method
Sequential 44.99 41.33 44.71 52.07 34.55 38.92 42.76

Baselines. Section 2.2 & Section 5.1
LAMOL 60.50 45.33 70.50 67.12 44.90 49.80 56.36
LAMOLall 59.71 53.07 69.52 62.89 51.29 58.49 59.16
LLKD 52.28 46.39 55.06 51.39 39.63 44.23 48.16

Proposed Framework. Section 3.1–3.2
Double LM 62.04 54.42 73.33 72.52 55.64 63.43 63.56
LM+Adapter 60.61 53.95 72.12 69.97 57.46 62.89 62.83

With Additional Pseudo Sample Enhancement. Section 3.4
LM+Adapter+R 61.77 55.55 72.37 70.19 56.29 61.84 63.00
LM+Adapter+T 61.71 55.45 72.50 68.94 55.76 62.29 62.78
LM+Adapter+RT 61.81 55.50 73.09 70.00 56.29 63.57 63.38

LAMOLreal 62.82 57.09 72.78 71.92 56.78 64.39 64.30
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Figure 5
Learning curves of task orders BSM and MBS. The graphs show accuracy at each epoch for each
task. Green background refers to the epochs on which the model is first introduced with a
particular task. In this figure, for example, the model is trained on Bool-Q and evaluated on all
the three tasks during epoch 1-5.

Additionally, to visualize the forgetting process, the learning curves of all methods
in Table 7 are illustrated in Figure 5. Each plot shows the score of its corresponding
task as the training progresses, with the first task in the order at the top and the last
at the bottom. Two task orders are selected to show here: the one where the effect of
CF can be seen most clearly (BSM) and the one where LAMOL successfully maintained
knowledge throughout training (MBS).

5.2.1 Short Sequence. According to Table 7, without any CF prevention measure, sequen-
tial fine-tuning achieved the NAAC score of 42.76%. Equipped with pseudo sample
replay, LAMOL improved the NAAC over sequential fine-tuning by 13.6%, showing
better knowledge retention ability. Even though from Table 5, in task order BSM,
LAMOL performed comparably with sequential fine-tuning in terms of final average ac-
curacy, LAMOL managed to achieve a 4% higher NAAC score, indicating that LAMOL
was able to prevent CF to some extent but eventually suffered from CF as the training
progressed. This can also be seen in the graphs (Figure 5(a)) where Bool-Q and SciFact
performance dropped after the Movie task was introduced. In task order MBS, LAMOL
was able to prevent CF and achieved a good NAAC score of 70.5%. Nevertheless, there
were still more signs of CF in the learning curve of the Movie task, where there are dips
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when new tasks are introduced. We also see this trend with other task orders as well,
meaning that LAMOL still struggles at preventing CF. In the same fashion as average
accuracy, LLKD achieved a low average NAAC score of only 48.16%, 8.2% lower than
LAMOL. Both graphs show that LLKD failed to prevent CF of the first task.

On the other hand, our framework is significantly more effective at preventing
CF, rivaling LAMOLreal in every task order. Both Double LM and LM+Adapter out-
performed LAMOL significantly with p-values of 0.014 and 0.039, respectively. Ap-
plying our pseudo sample enhancement strategies separately to LM+Adapter did not
improve the NAAC score. Nevertheless, with both strategies, LM+Adapter+RT gained
a statistically significant NAAC improvement of 0.55% (with a p-value of 0.019). It
can be inferred that high-quality pseudo samples should simultaneously possess both
characteristics (i.e., informativeness and answer correctness) as induced by ReGen and
temporal ensembling strategies. In task order BSM, methods that utilized our pseudo
sample enhancement strategies exhibit superior ability to retain the knowledge of
the Bool-Q task, resulting in an approximately 10% increase in accuracy over vanilla
LM+adapter at the final epoch of training. Interestingly, LM+Adapter+RT also exhibits
signs of backward knowledge transfer, where the performance of the prior tasks is
improved as training progressed. Specifically, the performance of the Bool-Q task is
actually higher at the last epoch than after it has just finished training on Bool-Q. For
task order MBS, the learning curves of our methods show better stability than LAMOL
where no large drops in accuracy can be seen.

5.2.2 Long Sequence. Considering sequences of five tasks, we also calculated the NAAC
scores of the methods in Table 6 and compiled them into Table 8. Unsurprisingly, there
is less CF in order FBTMS because the Fever task is relatively easier due to its data
characteristics (i.e., simpler language used and slightly shorter texts). Therefore, higher
quality pseudo samples were generated. LAMOL was able to achieve a strong score
of 70.12%. However, as illustrated in Figure 6a, our framework is more effective in
preventing CF, especially in the first task. LM+adapter and LM+adapter+RT gained an
improvement of 0.89% and 1.32% NAAC score over LAMOL.

Regarding the order SMBTF, as shown in Figure 6b, both LAMOL and LLKD failed
to prevent CF and achieved only 46.58% and 44.52% NAAC scores, respectively. Even
though LLKD achieved a slightly better average accuracy score (Table 6), it achieved
a lower NAAC score compared to LAMOL. This is because LAMOL was able to re-
tain more knowledge during training, albeit not until the final epoch. In contrast, our
proposed methods were able to prevent most of the CF presented in the baselines and
obtained a score of 60.90% and 63.63%.

Table 8
Normalized Area Under Accuracy Curve (NAAC) score of LLL models on five tasks, averaged
over three random seeds.

Methods FBTMS SMTBF Average

LAMOL 70.12 46.58 58.35
LLKD 57.25 44.52 50.48
LM+Adapter 71.01 60.90 65.95
LM+Adapter+RT 71.44 63.63 67.53

LAMOLreal 72.72 64.26 68.49
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Figure 6
Learning curves of task orders FBTMS and SMTBF. The graphs show the performance of all
methods at each epoch for each task.

5.3 Efficiency

We detail the runtime and parameter counts of each method in Table 9. The runtime
is calculated by averaging the runtime of all task permutations from Table 5. LLKD
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Table 9
Runtime and parameter count of different LLL methods from Table 5. The runtime is an average
of all task permutations across three random seeds.

Methods Runtime #Parameters
LAMOL 90.7 min 124.44M
LLKD 152.1 min 124.44M
ANML-ER 12.3 min 220.15M
Double LM 178.2 min 248.88M
LM+Adapter 127.5 min 125.33M
Re-generate +13.1 min –
Temporal Ensem. +3.2 min –

requires an additional forward pass through the teacher models for each example.
Therefore, it introduced an extra runtime of approximately 62 minutes on top of
LAMOL. Despite having almost 2 times more parameters over LAMOL, ANML-ER
restricts itself to making only a single pass through training data. Together with the
fact that the maximum sequence length that the BERT model supports is 512 tokens,
as opposed to 1,024 tokens of GPT2, it took only 12.3 minutes to run each task order.
In spite of the massive performance improvement, Double LM took almost 2 times
longer than vanilla LAMOL and doubled the storage requirement. LM+Adapter was
able to retain most of the improvements while taking only approximately 1.4 times
longer. It also requires a negligible amount of additional storage. We also report the
runtime of the pseudo sample enhancement strategies. Note that temporal ensembling
only temporarily stores the extra model, which is discarded after the generation process;
therefore, no additional parameters are introduced.

5.4 Results of Pseudo Sample Analysis

The analysis showed that pseudo samples generated by LAMOL mostly did not con-
form to the QA format and thus were not used in training. This is shown in Table 10a. As
a consequence, LAMOL was unable to effectively prevent catastrophic forgetting. This
problem is even more prevalent in LLKD. From Table 10b, it can be seen that almost
all pseudo samples are incorrectly formatted. This is likely a reason why its LL perfor-
mance is comparable to sequential fine-tuning. Our framework increased the success
rate of pseudo sample generation (Table 10c). This also resulted in a significant increase
in the final LL performance. Note that it is still possible for our framework to produce
malformed pseudo samples if the LM outputs special tokens inappropriately. However,
the numbers are much less than LAMOL, at least approximately seven times smaller.
There were also still some undesirable pseudo samples generated by our framework.
Here, we attempt to identify the cause and anticipate the effect of each aspect, providing
insights for future improvements.

Uninformative Pseudo Samples. From Table 10c, in task orders where SciFact is not the
last task, the number of uninformative pseudo samples dominates other aspects. This
is because the extremely complicated language used in the task examples of SciFact
greatly differs from the general domain on which GPT2 was pretrained. Thus, without
enough training examples, the LM fails to generate coherent examples. We hypothesize
that pseudo samples of this nature may not necessarily be destructive to the model’s
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Table 10
Results of the pseudo sample analysis. The numbers indicate the number of pseudo samples
corresponding to each characteristic, averaged over three seeds.

Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 41.00 320.00 72.33 1,239.00 310.00 703.00

Uninformative 0.00 0.00 0.00 0.67 1.67 1.00
Wrong task 2.00 0.00 0.33 7.33 0.00 10.67

Wrong Answer 8.00 0.00 2.33 5.33 3.00 72.33
Correct answer 30.00 0.00 6.00 19.67 5.33 485.00

Total Number 81.00 320.00 81.00 1,272.00 320.00 1,272.00
(a) Pseudo sample analysis of LAMOL.

Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 75.00 320.00 80.00 1,271.67 314.00 1,220.33

Uninformative 1.33 0.00 0.00 0.33 6.00 23.67
Wrong task 0.33 0.00 0.00 0.00 0.00 2.67

Wrong Answer 0.67 0.00 0.00 0.00 0.00 4.67
Correct answer 2.67 0.00 0.00 0.00 0.00 20.67

Total Number 81.00 320.00 81.00 1,272.00 320.00 1,272.00
(b) Pseudo sample analysis of LLKD.

Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 3.33 8.67 2.67 14.67 36.33 102.00

Uninformative 15.00 173.33 19.00 409.00 180.00 347.67
Wrong task 22.33 47.00 29.00 107.00 58.67 153.67

Wrong Answer 8.00 37.67 5.33 162.67 15.00 122.67
Correct answer 32.33 53.33 25.00 578.67 30.00 546.00

Total Number 81.00 320.00 81.00 1,272.00 320.00 1,272.00
(c) Pseudo sample analysis of LM+Adapter.

Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 0.33 1.00 1.67 11.00 26.00 23.00

Uninformative 0.00 4.00 0.00 0.00 5.00 0.33
Wrong task 23.67 105.00 31.00 194.67 93.67 128.00

Wrong Answer 10.67 91.33 12.67 194.67 81.67 186.00
Correct answer 46.33 118.67 35.67 871.67 113.67 934.67

Total Number 81.00 320.00 81.00 1,272.00 320.00 1,272.00
(d) Pseudo sample analysis of LM+Adapter+R.

Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 1.00 6.67 2.67 3.67 31.67 101.33

Uninformative 14.67 174.33 17.67 329.00 161.67 352.33
Wrong task 18.33 36.00 29.00 62.67 60.67 90.00

Wrong Answer 7.00 35.33 7.00 177.33 28.00 107.00
Correct answer 40.00 67.33 24.67 699.33 38.00 621.33

Total Number 81.00 320.00 81.00 1,272.00 320.00 1,272.00
(e) Pseudo sample analysis of LM+Adapter+T.

Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 0.33 2.00 0.33 5.33 21.00 36.67

Uninformative 1.67 80.67 3.33 53.00 42.00 24.67
Wrong task 22.67 69.33 35.33 109.00 102.33 103.33

Wrong Answer 7.67 68.33 6.67 191.33 66.00 171.00
Correct answer 48.67 99.67 35.33 913.33 88.67 936.33

Total Number 81.00 320.00 81.00 1,272.00 320.00 1,272.00
(f) Pseudo sample analysis of LM+Adapter+RT.
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knowledge; however, the generation quota could still be better allocated for more
informative pseudo samples. This hypothesis is supported by the minor improvements
gained by using ReGen.

Wrong Task Pseudo Samples. As mentioned in Sun, Ho, and Lee (2020), generated pseudo
samples sometimes do not correspond to the given task tokens. This is caused by the
imbalanced amount of pseudo samples and samples from a new task. As a result, the
model tends to generate more pseudo samples from newer tasks. From our pseudo
sample analysis, the problem is more prevalent when the training set of the new task
is larger than the one of the previous task. We have observed many wrong-task pseudo
samples to actually be perfectly fine pseudo samples, that is, having correct answers
and logically sound contexts and questions. Despite the decent quality of these pseudo
samples, wrong-task pseudo samples worsen the data imbalance problem. Therefore,
we believe that this kind of pseudo sample is less destructive to LL performance for
shorter task sequences. The effect of this problem is more apparent in longer task
sequences, where the knowledge of the first task is eventually lost, resulting in larger
gaps of performance between LAMOLreal and other methods (Table 6) when compared
with shorter sequences (Table 5).

Wrong Answer Pseudo Samples. We believe that pseudo samples with wrong answers are
the most destructive to the model’s knowledge, relative to the previously mentioned
issues. This effect is most clearly seen when we included temporal ensembling into
our framework, where improving answer correctness of pseudo samples consistently
improves the performance of our framework on every task permutation. Therefore,
future work should focus on minimizing the number of pseudo samples of this nature.

5.5 Comparison with Other Variants

In this section, we compare our proposed framework to its possible variants. More
specifically, we experimented with using different numbers of LMs in our framework.
Additionally, we evaluated all combinations of the responsibilities of the two LMs in
our framework to find the best combination.

Number of LMs. The proposed framework uses a second LM to exploit the structure of
the training samples to generate high-quality pseudo samples by heuristically control-
ling the generation step. However, it is also possible to use only one or three language
models for all or each part of a training sample (i.e., context, question, and answer),
respectively.

Nevertheless, it is not entirely straightforward to control the pseudo sample gen-
eration process when using a single LM. Instead, we opted to control the generation
process by setting the probabilities of special tokens that should not appear next to zero.
For instance, the probabilities of [ANS] and [EOS] are zeroed out until a [SEP] token is
generated. On the other hand, the heuristic can be naturally extended to the three-LM
setting. The responsibility of each part of a training sample can be delegated to each
LM. To this end, we implemented the three-LM setting using one LM + two Adapters
to reduce training time.

The results in Table 11 show that using two LMs achieved the best average perfor-
mance of 69.96%. Whereas the other two variations performed on par, achieving approx-
imately 65% average accuracy. We attribute the superior performance of Double LM to
the better trade-off of model capacity and exploitation of sample correlation. To explain,
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Table 11
Accuracy of the proposed framework when applied to various numbers of LM. Note that, to
increase training efficiency, Double LM and Triple LM were implemented using one LM + one
Adapter and one LM + two Adapters, respectively.

Methods BMS BSM MBS MSB SBM SMB Average Std.

Single LM+constraint 66.44 65.80 68.94 66.88 59.24 66.60 65.65 3.31
Double LM 69.68 67.88 69.73 69.19 69.00 71.23 69.45 1.10
Triple LM 68.39 65.61 66.66 59.01 68.39 65.06 65.52 3.47

Table 12
Top: A pseudo sample generated by the single LM variant. This particular one has consistent
context and answer; however, the answer was also generated in the context part (highlighted in
red). Middle: A pseudo sample generated by the Double LM variant. This pseudo sample is
consistent and its answer is properly placed. Bottom: A pseudo sample generated by the triple
LM variant. The answer was positioned properly; however, it is incorrect.

Pseudo Sample Examples

Single LM
. . . directed by JANE ANDERSON, also stars JOHN CL [UNK] POS. it’s a story with a rich history.
I’m a big fan of that term, but i’m not interested in the specifics of it. what you are looking at is an
extraordinary tale filled with rich characters, great characterization, and a fascinating story about
. . . [SEP] What is the sentiment of this review? [ANS] POS

Double LM
. . . and it’s one that we have to take seriously. the movie is very, very good; it’s an absolute gem.
it’s an absolute masterpiece: an intelligent, funny, well thought out tale of love and redemption.
it’s a story of redemption; it’s about love and redemption and what it means to be gay in a society
that is rife with discrimination . . . [SEP] What is the sentiment of this review? [ANS] POS

Triple LM

. . . i am really happy with this remake. it was a pretty good movie, but it wasn’t really bad.
although the characters were different, it was very well done. it doesn’t deserve to be considered
that bad. it is a good remake, but it doesn’t deserve to be considered that bad. [SEP] What is the
sentiment of this review? [ANS] NEG

we believe that having generated the context part of the sample can bias the model
toward generating more correct answers. Evidence for this is that pseudo samples from
the single LM variant sometimes contain an answer in the context part.8 An example is
illustrated in Table 12 (top). This could be because the single LM could associate, for
instance, positive vocabularies (e.g., “very good movie”) with the ‘Positive’ answer.
Therefore, by generating context that is sufficiently polarized (i.e., not ambiguous),
its corresponding answer can be generated more accurately. Despite this advantage,
however, the single LM could not model long complicated sequences properly due to
its limited model capacity. Even though the masking process tried to prevent such a
situation explicitly, there were multiple instances where the model did not generate any
special token, resulting in malformed pseudo samples. This leads to the highest number
of “Wrong Format” pseudo samples in every order, as shown in Table 13a, compared to
the other two variations in Tables 10c and 13b. In contrast, while the extra capacity
of the three LM variation enables the generation of pseudo samples with the correct
format, the detached generation process makes pseudo samples more prone to “Wrong
Answer” errors as shown in Table 13b. One example is provided in Table 12 (bottom).

8 Note that in a good pseudo sample, an answer should not appear in the context.
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Table 13
Additional pseudo sample analysis for single LM and triple LM.

Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 17.33 70.33 17.33 358.33 171.33 332.33
Uninformative 9.00 33.67 4.33 82.33 102.00 481.67

Wrong task 14.67 119.00 20.00 264.00 26.00 124.00
Wrong Answer 7.00 44.00 3.33 156.00 10.67 59.00
Correct answer 32.00 53.00 13.67 411.33 9.67 275.00

Total Number 81.00 320.00 81.00 1,272.00 320.00 1,272.00
(a) Pseudo sample analysis of Single LM.

Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 0.67 0.33 1.00 32.33 4.33 22.00
Uninformative 0.33 1.67 3.00 27.00 1.00 40.67

Wrong task 13.33 88.67 16.00 73.33 43.67 49.33
Wrong Answer 18.00 104.33 17.00 442.00 118.33 343.00
Correct answer 47.67 125.00 43.00 697.33 152.67 817.00

Total Number 81.00 320.00 81.00 1,272.00 320.00 1,272.00
(b) Pseudo sample analysis of Triple LM.

This lowers the quality of pseudo samples, leading to worse average performance due
to CF. Meanwhile, the proposed Double LM can generate more pseudo samples with
both correct answers (like single LM) and correct format (like triple LM). We show an
example in Table 12 (middle).

Responsibilities of LMs. Our proposed framework uses LM1 to learn the context part and
the QA task and uses LM2 to learn the question part. This can be written as (c+qa/q).
We also experimented with two other configurations of our proposed Double LM,
namely:

• (c+q/qa): LM1 learns the context and the question parts, whereas LM2
learns the QA task only; and

• (c/q+qa): LM1 learns only the context, while LM2 learns the question part
and the QA task.

We experimented on all permutations of the three tasks: BoolQ, Movie Reviews, and
SciFact. The results are reported in Table 14. We found that the first variation (c+q/qa)
performs comparably with our default configuration (c+qa/q) while having a higher
standard deviation. The second variation (c/q+qa) was observed to produce mostly
malformed pseudo samples. In particular, the LM was unable to distinguish between

Table 14
The performance of variations of our framework.

Variation Average Acc. Std.
Double LM (c+qa/q) 69.96 1.29
Double LM (c+q/qa) 69.43 2.64
Double LM (c/q+qa) 30.68 9.83
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Table 15
The average token count of each dataset based on the GPT2 tokenizer. The token count is for a
whole training sample, i.e., context, question, and answer.
Dataset Average Token Count Dataset Average Token Count
Long Text Short Text

BoolQ 4,137 SQuADv1 165
Fever 436 WikiSQL 113
Movie 855 SST 31
SciFact 384 QA-SRL 38
TriviaQA 1,097 WOZ 25

Table 16
The performance of different methods on task sequence: SQuADv1→WikiSQL→ SST→
QA-SRL→WOZ. Note that the ReGen strategy was not required because there were virtually
no uninformative pseudo samples present in the experiments.

Methods Average Acc.
LAMOL 73.24
LM+Adapter 72.89
LM+Adapter+T 73.45

the question generation process (step 2 of Figure 2) and the answer generation process
(step 3 of Figure 2). Thus, most generated pseudo samples do not have answers but
rather two questions. As a result, this variation was unable to prevent CF and achieved
only 30.68% average accuracy, comparable to sequential fine-tuning.

5.6 Discussion on Input Length

Though the proposed framework showed impressive performance improvements over
LAMOL in our experiments, it provides relatively small improvements on datasets with
short texts such as those in Sun, Ho, and Lee (2020). As shown in Table 15, datasets
from Sun, Ho, and Lee (2020) are up to two orders of magnitude shorter than those
used in our experiments. It is mentioned in their paper that the quality of the generated
text degrades as the training samples get longer. Consequently, in our experimental
settings, LAMOL failed to generate decent pseudo samples. On the contrary, in a short
text dataset, LAMOL is already able to produce high-quality pseudo samples. Hence,
the Double LM framework would only introduce additional training time.

Table 16 shows the performance of LAMOL compared with our framework on one
task sequence from the original LAMOL paper: SQuADv1→WikiSQL→ SST→ QA-
SRL→WOZ. We trained LAMOL and our methods for nine epochs on each task as in
Sun, Ho, and Lee (2020).

6. Conclusion

We introduced Double LM, a lifelong learning framework that focuses on improving
pseudo samples used to retain the knowledge of previously learned tasks. In our exper-
iments, Double LM was able to significantly outperform LAMOL in terms of average
accuracy and knowledge retained on every task sequence as well as other rehearsal
baselines (LLKD and ANML-ER). We also successfully reduced the computational
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Table A1
Accuracy of different methods when trained for nine epochs, averaged over three random seeds.
Methods BMS BSM MBS MSB SBM SMB Average Std.
LAMOL 69.70 57.37 72.59 71.32 60.95 51.48 64.09 8.60
LLKD 56.66 35.53 68.32 69.70 47.15 48.97 51.59 13.20
ANML-ER 55.64 42.43 42.02 69.00 59.13 59.58 54.63 10.58
LM+Adapter 71.64 66.31 73.02 72.75 69.93 70.17 70.64 2.47
LM+Adapter+RT 71.79 71.29 73.55 73.55 72.32 73.74 72.54 1.05
LAMOLreal 71.80 71.28 72.67 72.67 74.79 73.43 73.20 1.24

requirements of Double LM by using the adapter modules. By applying temporal
ensembling and simple pseudo sample re-generation to enhance pseudo samples, our
framework was able to almost match the performance of LAMOLreal. Lastly, we pro-
vided an analysis of pseudo samples and their effects on LL performance. For future
work, we aim to enhance the impact of our framework on tasks with shorter texts.

Appendix A: Exploring the Effect of Longer Training

In this section, we show the results of our proposed methods and the baselines trained
for nine epochs in Table A1. For our proposed methods, we chose to train only
LM+Adapter and LM+Adapter+RT to reduce the computational resources required.
Note that ANML-ER only trains on one epoch; therefore, the scores are provided as
reference only.

From the table, both LAMOL and LLKD gained substantial improvements of 8.42%
and 13.97%, respectively, when compared to training on five epochs whereas our meth-
ods improved relatively slightly by 1.19% and 1.33%, respectively. However, there is
still a large performance gap between the baselines and our methods. It can be inferred
that our proposed methods converged much more quickly than the baselines because
the task factorization of our framework reduces the complexity of the LM task. Conver-
gence speed is one of the various desired properties of a true lifelong learner.

Overall, the same conclusions as in Section 5.1 can be drawn from the results in Ta-
ble A1. Specifically, LM+Adapter still outperforms LAMOL with statistical significance
(p-value of 0.047) and applying pseudo sample enhancement strategies further improve
the performance of our framework significantly (p-value of 0.044).
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