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1. Introduction

The representation of text meaning is a fundamental issue in Natural Language Pro-
cessing (NLP). It involves encoding natural language in a way that can be handled
by information management systems. It is one of the main bottlenecks in Textual In-
formation Access, Text Mining, Dialogue Systems, and so forth. The conflict between
compositionality and contextuality (Frege’s principles) exhibits a tension between the
meaning representation paradigms, namely, symbolic and distributional (Maruyama
2019).

The Principle of Compositionality states that the meaning of a whole is a function of
the meaning of its parts and the syntactic way in which they are combined together. This
principle is the main foundation of the symbolic representation paradigm, which at-
tempts to relate language to propositional logic via extended semantic references (word
referential meaning) and grammars that capture the language structures. For instance,
in the symbolic paradigm, “table” and “sitting” are associated with their references
(icons in Figure 1a) and the utterance “sitting at a table” is the result of being combined
by means of a syntactic structure.

On the other hand, The Principle of Contextuality states that the meaning of words
and utterances! is determined by their context. This principle supports the distribu-
tional representation paradigm, in which the meaning of linguistic items is inferred
from their context of use. Rather than symbols, words or utterances are represented as
points in a continuous vector space (embeddings; i.e., vectors in Figure 1b). For instance,
the words “table” and “sitting,” and the utterance “sitting at a table” are projected in the
representation space according to the textual context in which they usually appear. In
contrast to the symbolic paradigm, the distributional paradigm interprets the meaning
space as a continuous, that is, there exists a graded scale of meaning representations
between “sitting,” “table,” and “sitting at a table.”

Over the last decade, distributional NLP approaches have undoubtedly been the
predominant basis of NLP applications thanks to their predictive power over a sufficient
amount of textual data. In particular, Neural Language Models, such as Generative Pre-
trained Transformer (GPT) (Radford et al. 2019) and Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al. 2019), pre-trained over a huge amount of
parameters and text collections, have demonstrated high performance on specific tasks
with limited supervised data. However, in terms of meaning representation, there is
considerable consensus in the literature that one of the main limitations of the distribu-
tional paradigm is its lack of systematicity (Johnson 2004; Talmor et al. 2020; Pimentel
et al. 2020; Goodwin, Sinha, and O’Donnell 2020; Hupkes et al. 2020; Bender and Koller
2020). Robert Cumming defined language systematicity as follows (Cummins 1996,
page 591): A system is said to exhibit systematicity if, whenever it can process a sentence, it can
process systematic variants, where systematic variation is understood in terms of permuting con-
stituents or (more strongly) substituting constituents of the same grammatical category. Briefly,
while in the symbolic paradigm the productive rules defining grammars admit infinite
combinations and permutations, the distributional paradigm is somewhat conditioned
by the word sequences observed in the training corpus.

1 In this article we will use the terms word and utterance. The notion of word used in this article can be
generalized to any atomic element on which composition or distributional analysis is applied by the
computational linguistic model. This ranges from morphemes in synthetic languages such as German to
multiwords or collocations. On the other hand, we will use the term utterance to refer to the compound
expressions we want to represent.
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Figure 1

Representation paradigms in computational linguistics.

Because distributional and compositional representation approaches present com-
plementary properties (contextuality vs. systematicity), Maruyama (2019) raised the
need for a Kantian Synthesis. The hypothesis is that the meaning of linguistic forms
is given by a reflow between their context and components. In this line, a number of
authors have proposed adding a compositional layer over distributional representa-
tions. These models are referred to as Compositional Distributional Semantic models
(Mitchell and Lapata 2010; Arora, Liang, and Ma 2017; Clark and Pulman 2007; Coecke,
Sadrzadeh, and Clark 2010). As shown in Figure 1c, in the distributional compositional
paradigm, the utterance “sitting at a table” is not inferred from the context in which it
appears, but by a composition function applied on the distributional representations
of “sitting” and “table.” In other words, context of words determines their meaning. At
the same time, the meaning of the utterance is given by the words that compose it and
compositional operators. This allows us to exploit the compositionality systematicity on
utterances whose length does not allow us to infer usage statistics.

The main goal of this article is the formal study of embedding, composition,
and similarity functions in the context of Compositional Distributional representation
models, allowing for the analysis of the problem independently of the task in which
the representation is applied. For this purpose, we formalize the notion of Informa-
tion Theory-based Compositional Distributional Semantics, the contribution of which to
Distributional Compositional models consists of establishing formal constraints for
embedding, composition, and similarity functions (Figure 1d). These constraints are
based on Shannon’s concept of Information Content (IC), establishing a link between
distributional semantics, compositional language structures, and Information Theory.

We apply the following methodology. We first establish formal properties for em-
bedding, composition, and similarity functions based on Shannon’s Information Theory.
Then we analyze the existing approaches under this prism, checking whether or not
they comply with the established desirable properties. After this, we propose two
parameterizable composition and similarity functions that generalize traditional ap-
proaches while fulfilling the formal properties. Finally, we perform an empirical study
on several textual similarity datasets that include sentences with a high and low lexical
overlap, and on the similarity between words and their description. Our theoretical
analysis and empirical results show that fulfilling formal properties affects positively
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the accuracy of text representation models in terms of correspondence between the
embedding and meaning spaces.

The article is structured as follows. Section 2 analyzes the main existing semantic
approaches from a historical perspective and reviews Compositional Distributional Se-
mantics models in more detail. Sections 3 and 4 describe the proposed theoretical frame-
work for Information Theory-based Compositional Distributional Semantics (ICDS).
Section 5 describes the proposed generalized similarity and composition functions,
their properties, and their connection with existing functions. Section 6 displays our
experiments and results. Finally, we draw our conclusions in Section 7.

2. Related Work
2.1 Text Representation Paradigms

To get an overview of the different text representation paradigms, we will consider the
following set of properties.

SYSTEMATICITY: Whenever the representation is able process a sentence, it can pro-
cess systematic variants, where systematic variation is understood in terms of
permuting constituents or (more strongly) substituting constituents of the same
grammatical category.

USAGE CONTEXT: The meaning representation is sensitive to the contexts in which
the expression appears. There is a consensus among psycholinguists that the
semantics of the basic units of language (words, collocations) is determined by
their use (Wittgenstein 1953). Put in computational linguistic terms, this is known
as the Distributional Hypothesis (Harris 1954; Firth 1957).

CONTINUITY: There is a multidimensional continuous space where the meaning rep-
resentations are mapped. The distributional approach offers us a way to capture
the full continuum of meaning (Erk 2009; Gladkova and Drozd 2016). Moreover,
this space should be isometric with respect to the meaning affinity of expressions,
that is, it should reflect semantic similarities within the space of embeddings. The
continuity property offers important advantages, such as the ability to generalize
by proximity in space and to incorporate dimensionality reduction mechanisms,
and so on (Landauer 1997).

INFORMATION MEASURABILITY: The representation system includes a function that
measures the amount of information contained in the represented utterance. In
general, the amount of information is measured in terms of specificity or like-
lihood, in concordance with Shannon’s notion of Information Content (I(x) =
—log(P(x)). This links the representation system with the notion of language
model, and is a key aspect in representation models (Zhai 2008) and textual
similarity measures (Lin 1998).

In this section, we will show that, since the beginning of NLP, these properties have
been captured or lost as new paradigms have been established. The loss of properties
in each paradigm was compensated for by the use of different techniques. Table 1
summarizes this historic evolution.

The first semantic models were based on logicist approaches assuming the Prin-
ciple of Compositionality (e.g., via Preference Semantics [Wilks 1968]). These models
establish a univocal relationship between a symbol (or a set of symbols) in context
and its meaning (Boleda and Erk 2015). The space of senses is given by ontological
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Table 1
Semantic representation approaches and their properties. The table includes techniques used to
mitigate drawbacks.

SYSTEMATICITY USAGE CONTINUITY INFORMATION
CONTEXT MEASURABILITY
Symbolic Complying;: v X X X
Paradigm WSD Ontological Ontological
Approach: Prob. grammars similarity deepness
Vector Complying: X X 4 X
Space R . .
Model Tensor-based  Dimensionality Feature
Approach: approaches reduction weighting
Count-based Complying: X v X v
L
Ma: g;:ge Independence Similarity between
Approach: assumption probabilities
Neural Complying;: X v v v
Language
Models Vector
Approach: operators
Compositional ~ Complying: v v v v
Distributional
Approaches

resources such as WordNet (Fellbaum 1998). The symbolic paradigm is inherently
systematic, since it connects with propositional logic. The other aspects are only par-
tially captured. First, the compositional paradigm is fundamentally based on rules, not
on the distributional features of language (USAGE CONTEXT); however, the context of
use is partially captured by techniques such as Lexical Sense Disambiguation (Navigli
2009) that maps words to senses according to their context, and Probabilistic Grammars
(Sekine and Grishman 1995) trained on text corpora. Although the semantic space
in the symbolic paradigm is discrete, the lack of CONTINUITY is partially mitigated
by means of similarity metrics between nodes within an ontology, for example, via
Conceptual Density (Agirre and Rigau 1996) in WordNet. The lack of INFORMATION
MEASURABILITY at the lexical level within these models has also been addressed via
the deepness of nodes (specificity) in the hierarchical ontology (Seco, Veale, and Hayes
2004).

From the 1980s onward, the Statistical Paradigm, whose representation system
was fundamentally based on the Vector Space Model (VSM) (Salton and Lesk 1965),
gained strength. Under this paradigm, texts are represented as a bag of independent
words, disregarding word order and grammar. Consequently, SYSTEMATICITY is not
captured, since the structures of the language are ignored. Some approaches incorpo-
rate a certain level of SYSTEMATICITY by means of objects more complex than simple
vectors, such as tensors (Baroni and Lenci 2010; Pad6 and Lapata 2007; Turney 2007).
The natural language property that the VSM incorporates is CONTINUITY on which
similarity measures are applied, such as cosine, dot product, or Euclidean distance.
Because the original VSM assumes word independence, it does not capture USAGE
CONTEXT. This lack is tackled via dimensionality reduction approaches based on the
Distributional Hypothesis, such as Latent Semantic Indexing (Deerwester et al. 1990)
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or Latent Dirichlet Allocation (Blei et al. 2003).> Regarding INFORMATION MEASUR-
ABILITY, the Term Frequency-Inverse Document Frequency (TF-IDF) term weighting
function and its variants (such as projection functions that are within vector space)
approaches the probability of the represented utterance and have a direct connection
with the notion of Information Content in Shannon’s theory (Robertson 2004).

The next generation of meaning representation consisted of the Count-based Lan-
guage Models. In these models, texts are represented as word sequences and their
probability distribution (Andreas, Vlachos, and Clark 2013). INFORMATION MEASUR-
ABILITY is captured via perplexity, a concept directly based on Shannon’s notion of
Information Content. Language Models are mainly usage-oriented, since perplexity is
based on the frequency of words in given contexts. Texts are represented as a whole
(holistic) in terms of the word sequence and its probability. Consequently, the lack of
SYSTEMATICITY is a limitation of Language Models because the probability of a word
sequence cannot be inferred from the probability of its parts (Bengio et al. 2003). Just like
in the VSM, a way of mitigating this lack consists in assuming statistical independence
and applying the product of probabilities; this is the case of the n-gram model (Brown
et al. 1993). Regarding semantic CONTINUITY, Language Models represent texts as
token sequences rather than a point in a continuous space. In addition, they do not
provide a direct notion of similarity between word sequences, but between differ-
ent Language Models (e.g., Kullback-Leibler divergence) or sequences vs. Language
Models (perplexity).

Lastly, the most successful approaches over the last few years are supported by
Neural Language Models, which are based on neural networks pre-trained over a
huge text corpus on the basis of USAGE CONTEXT (Devlin et al. 2019; Brown et al.
2020). Neural Language Models combine the properties of VSMs and Language Models.
On the one hand, text embedding is given by the activation state of neural network
inner layers. Therefore, as in the VSM, the representation space is a continuum, al-
lowing generalization. Just like traditional Language Models, the network is trained
to predict words, estimating a probabilistic distribution of word sequences given their
context. In consequence, Neural Language Models capture both USAGE CONTEXT and
INFORMATION MEASURABILITY. Their limitation is still SYSTEMATICITY. Finally, the
Compositional Distributional paradigm covers all properties and is discussed in detail
in the next section.

In Table 1, a summary of the semantic models and the linguistic features of language
that they address is shown. In view of this table, we can conclude that CONTINUITY,
INFORMATION MEASURABILITY, USAGE CONTEXT, and SYSTEMATICITY are comple-
mentary desirable properties that have been addressed from different paradigms,
although covering all of them simultaneously remains a challenge for the Natural
Language Processing community.

2.2 Distributional Semantic Representation Models: From Word Embeddings
to Transformers

In 2008, Collobert and Weston (2008) demonstrated that word embeddings generated
from a suitably large dataset carry syntactic and semantic meaning and improve the
performance on subsequent NLP tasks. However, the hype regarding neural encoders

2 Note that dimensionality reduction compresses the representation by taking into account the
interdependence between terms.
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really started in 2013 with the distributional semantic model known as Skip-gram with
Negative Sampling (SGNS, Word2Vec package) (Mikolov et al. 2013). Some authors
proposed the extension of this approach to represent longer linguistic units, such as
sentences (Kiros et al. 2015) or documents (Le and Mikolov 2014; Kenter, Borisov,
and de Rijke 2016). Static Neural Models (also referred to as Non-Contextual Neural
Models) such as SGNS or GloVe (Pennington, Socher, and Manning 2014) optimize
the correspondence between the scalar product of embeddings and their distributional
similarity (Mutual Information) (Levy and Goldberg 2014; Le and Mikolov 2014; Arora
et al. 2016). Assuming the distributional hypothesis (similar words appear in similar
contexts), this ensures a certain isometry between the embedding space and meanings.

These embedding approaches are static. That is, the representation of each word is
fixed regardless of the particular context in which it appears. The second generation
of encoders are sequential models that are sensitive to the word sequence order. The
Long Short Term Memory (LSTM) model (Hochreiter and Schmidhuber 1997) and its
variants introduced a memory cell that is able to preserve a state over long periods of
time. Several authors presented unsupervised, pre-trained, bidirectional LSTM-based
encoders, such as CoVe (McCann et al. 2017) and ELMo (Peters et al. 2018), which can
improve the performance on a wide variety of common NLP tasks. Next came graph-
based approaches, which use a fully connected graph to model the relation of every two
words within the input text. A successful implementation of this idea is the Transformer
(Vaswani et al. 2017). In the Transformer, the neural network is pre-trained over a large
text corpus under different self-supervised tasks such as Masked Language Modeling
(MLM), Sequence to Sequence (Seq2Seq), Permuted Language Modeling (PLM), De-
noising Autoencoder (DAE), Constrastive Learning (CTL), Replaced Token Detection
(TRD), Next Sentence Prediction (NSP), and Sentence Order Prediction (SOP). Com-
bining some of these tasks has also been proposed, such as BERT (Devlin et al. 2019),
Transformer-XL, ALBERT, XLNet (Yang et al. 2019), ELECTRA (Clark et al. 2020), BART
(Lewis et al. 2019), or GPT (Brown et al. 2020). Transformer-based Neural Language
Models are able to solve tasks quite accurately from a limited set of training samples
(via fine-tuning). Moreover, as Language Models, they have great predictive power
over word strings (Radford et al. 2019; Brown et al. 2020).

However, it has been shown in the literature that contextual models do not always
maintain the isometry with respect to the semantic similarity of words utterances.
They concentrate the representation of words in hypercones of multidimensional space.
This phenomenon has been called the representation degradation problem (Ethayarajh
2019; Gao et al. 2019; Li et al. 2020; Wu et al. 2020; Cai et al. 2021). The result is that
contextual models are very predictive as Language Models, but not very effective in
terms of text representation within a semantic space. In other words, although the
neural network is able to predict words from the previous sequence and classification
labels, the embedding space in which the texts are represented is not coherent with
their meanings. According to different authors, such as Gao et al. (2019) and Demeter,
Kimmel, and Downey (2020), this is due to an effect of infrequent words in the soft max
optimization function. We will see that this limitation has an effect on our experiments.
In addition, previous experiments show that the effect of the representation degradation
problem is stronger in higher net layers where the word representations are more
contextualized (Ethayarajh 2019). However, solving this problem is not the focus of the
article and we leave its analysis for future work.

Some approaches, such as Sentence-BERT (Reimers and Gurevych 2019) and the
Universal Sentence Encoder (Cer et al. 2018), address this problem by training the net-
work over sentence pairs as a similarity classification task. However, the effectiveness

913



Computational Linguistics Volume 48, Number 4

of these models may decline when the compared texts have different characteristics
from the text units on which they have been trained. In particular, Raffel et al. (2020)
found that supervised transfer learning from multiple tasks does not outperform unsu-
pervised pre-training. Yogatama et al. (2019) conducted an extensive empirical investi-
gation to evaluate state-of-the-art Natural Language Understanding models through
a series of experiments that assess the task-independence of the knowledge being
acquired by the learning process. They concluded that the performance is sensitive
to the election of the supervised training task. We confirmed this phenomenon in our
own experiments.

Recent experiments suggest through probes that Neural Language Models do not
capture the systematic nature of language (Talmor et al. 2020; Pimentel et al. 2020;
Goodwin, Sinha, and O’Donnell 2020; Hupkes et al. 2020; Bender and Koller 2020).
When probing, a researcher chooses a linguistic task and trains a supervised model to
predict annotations in that linguistic task from the network’s learned representations.
One of the most meticulous experiments was performed by Hupkes et al. (2020). This
team developed five behavioral tests in order to analyze whether neural networks are
able to generalize compositional aspects. The authors found that, for the majority of
these tests, Recurrent, Convolution-based, and Transformer models fail. In summary,
although tremendously powerful, Neural Language Models alone cannot represent
previously unseen textual information by composition.

2.3 Compositional Distributional Semantic Models

In the Compositional Distributional approach, texts longer than one word are repre-
sented by means of a composition function that combines distributional representa-
tions of linguistic units. A large body of literature has shown that the sum or global
average of word embeddings is very effective, often outperforming more sophisticated
methods (Mitchell and Lapata 2010; Boleda 2020; Lenci 2018; Blacoe and Lapata 2012;
Perone, Silveira, and Paula 2018; Baroni and Lenci 2010; Rimell et al. 2016; Czarnowska,
Emerson, and Copestake 2019; Wieting and Gimpel 2018; Ethayarajh 2018). An intrinsic
limitation of the additive approaches is that word order is not considered, since these
composition functions are associative and, in addition, some experiments suggest that
their effectiveness degrades with sentence length (Polajnar, Rimell, and Clark 2014).
The tensor product has also been studied as a composition function (Clark and Pulman
2007); its main disadvantage is that the space complexity grows exponentially as more
constituents are composed together.

As mentioned in the previous section, the Principle of Compositionality states that
the composite meaning depends on the meaning of constituents and their syntactic rela-
tionships. In order to capture the information of linguistic structures, some researchers
have trained an additive composition function on the basis of expression equivalences
(Zanzotto et al. 2010), sentence similarity and paraphrasing tasks (Mitchell and Lapata
2008; Wieting et al. 2015), or sentiment labels in movie reviews (Socher et al. 2012).
Their main limitations are that the composite structures are biased by the nature of the
training corpora and are difficult to scale on more complex linguistic structures.

In another line of work, some authors proposed adding a symbolic layer on top
of the distributional word representation. More specifically, Coecke, Sadrzadeh, and
Clark (2010) proposed a composition function relying on the algebra of pre-groups and
checked empirically the preservation of the vector dot product as an approach to simi-
larity, although this property was not formally derived. Its main drawback is scalability
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(Zhang 2014). It has been applied to relational words (Grefenstette and Sadrzadeh 2011);
simple phrases (Kartsaklis, Sadrzadeh, and Pulman 2012); and pronouns, prepositions,
and adjective phrases (Zhang 2014). Smolensky et al. (2016) presented an initial work
on mapping inference in predicate logic based on tensor product representations. This
approach is limited by the need for a previous mapping between phrases or sentences
and logical propositions.

Finally, other authors have grounded their compositional approach on Informa-
tion Theory notions. Arora, Liang, and Ma (2017) proved that applying IDF (word
specificity®) weighted sum of vector plus Singular Value Decomposition achieves com-
petitive results regarding some sequential models such as LSTM. Zhelezniak, Savkov,
and Hammerla (2020) represented sentences as a sequence of random vectors and
experimented with their Mutual Information approach as a sentence similarity measure.
A common limitation of both approaches is that they do not consider the syntactic
structure of the sentence.

In the context of the state of the art, we can situate our work as follows. We propose
a framework for Compositional Distributional representation and study the formal
desirable properties of embedding, composition, and similarity functions. Our work fo-
cuses on the problem of representation itself, taking as an objective the correspondence
between distributional representations and meanings.

3. Theoretical Framework

In this section, we describe the proposed theoretical framework. First, we establish a ge-
ometric interpretation of Distributional Semantics and its connection with Information
Theory. Next, we formally define the notion of Information Theory-based Composi-
tional Distributional Semantics and its formal properties.

3.1 Geometrical Interpretation of Distributional Semantics

First, our theoretical framework is built on a phenomenon that has been formally
justified and observed repeatedly in the literature: There exists a correspondence between
the vector norm and the specificity or IC of the represented utterance. Formally, according to
the analysis by Levy and Goldberg (2014) and Arora et al. (2016), the dot product of
SGNS embedding approximates the Pointwise Mutual Information (PMI) between two
words. With 7t(w) being the embedding of the word w:

(m(w), m(w')) o PMI(w,w’) = log (%)

This implies that there exists a correspondence between the vector norm and the IC
of represented utterances according to Shannon’s Information Theory:

1C(@) = ~ log(P()) = ~log s “prts ) = PG, ) = (), ) = )P

3 Note that IDF(t) = (log(m )) , where D represents the document collection and N represents its

size, has a direct correspondence with its specificity of Information Content IC(t) = — log(P(t)) according
to the Shannon’s Information Theory.
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In addition, Gao et al. (2019) proved that under some assumptions, the optimal
embeddings of infrequent tokens in Transformer Language Models can be extremely
far away from the origin. Li et al. (2020, page 9121) observed empirically that “high-
frequency words are all close to the origin, while low-frequency words are far away
from the origin” in Transformer language models.

On the other hand, this phenomenon makes sense from the point of view of text
representation. The absence of textual information should be a singular point in the
representation space (origin of coordinates). This point should be equidistant to any
text with a fixed amount of information. In other words, the set of possible texts with
a fixed amount of information should form a sphere around the empty information
point. In short, it makes sense that the representations are distributed around the origin
of coordinates at a distance proportional to the amount of information they contain.

Figure 2 illustrates this idea. The longer a word sequence is, the lower its probability,
increasing its specificity and, therefore, its IC. Consequently, as we remove words from
an utterance, its embedding approaches the origin of coordinates (vector norm tends to
zero). At the end, the probability of the empty word set is maximal, and therefore, its IC
is minimal.

Another consequence of this geometrical interpretation of Distributional Semantic
representation is that the meaning in the pragmatic context of any utterance must be repre-
sented as an infinite norm vector (human thinking in Figure 2). Assuming that the meaning
in the pragmatic context of any utterance is extremely specific (time, place, actors, physic
context, open-ended world knowledge, etc.), then we can assert that its probability in
the semantic space tends to zero and therefore its IC according to Shannon’s Theory is
infinite. The representation is therefore theoretically an infinite vector and its proximity
depends exclusively on its angular distance.

Because it is a continuous representation space, the embedding distances should
approximate the semantic similarity of their utterances. However, we can consider two
different notions of semantic similarity. On the one hand, pragmatic semantic similarity
refers to the meaning proximity of two utterances taking into account the context in
which they are used. In our geometric space, since the pragmatic meaning corresponds
with infinite norm vectors, this would translate to the angular distance between infi-
nite norm vectors. In fact, cosine similarity is the standard measure in distributional
representations.

On the other hand, literal similarity takes into account the amount of information
provided by the utterance. For example, although “hello” may be equivalent to “hello

IC=0

Figure 2
Geometric interpretation of text embedding based on Information Theory.
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from Barcelona” in a certain context of use, there is a difference in terms of literal
similarity, since “hello” is under-specified regarding “hello from Barcelona.” That is, the
space of possible meanings in the context of “hello” is broader and therefore its literal
IC is lower. In empirical terms, literal utterance similarity represents the expected
similarity given an annotator who is shown the two utterances without any information
about their pragmatic context.

We can summarize the geometrical interpretation of embedding models as follows:
The direction of an embedding represents the pragmatic meaning, and the vector norm of
embedding represents how much information the literal utterance provides about its meaning in
the pragmatic context. Returning to the example in Figure 2, the meaning of “Barcelona”
depends on its pragmatic context. As we add words (“from Barcelona,” “hello, from
Barcelona”), the meaning in the pragmatic context of what the sender means to express
becomes more precisely defined. That is, as we add context information to the expres-
sion when adding words, the embedding norm will become progressively longer and
its semantic orientation more precise. Only in infinity do we arrive at the meaning in
the pragmatic context. In this paper, we identify the properties that embedding, compo-
sition, and similarity functions should fulfill based on this geometric interpretation.

3.2 Information Theory-based Compositional Distributional Semantics

We formalize the notion of Information Theory-based Compositional Distributional Se-
mantics as a tuple of three functions, namely: embedding, composition, and similarity. This
framework synthesizes the distributional and compositional paradigms; the hypothesis
underlying the notion of ICDS is that there are minimal linguistic units whose semantics
are determined by their use and whose amount of information is determined by their specificity.
On the other hand, the systematicity of language can be captured by compositional mechanisms
while preserving the amount of information of the composite utterance.

Figure 3 illustrates the ICDS framework. The starting point in this example is a set
of three words: “yellow,” “star,” and “galaxy.” The semantics of these atoms are inferred
on the basis of their use or distributional properties, and not by composition. In our

/ | 7.‘- star

yellow

Figure 3
Embedding (), Information Content (IC, vector norm), Composition (®), and Similarity ()
functions in an Information Theory-based Compositional Distributional Semantics system.
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framework, we assume that there exists an embedding function 7 : S — R", which
returns a vector representation for each basic linguistic unit x in the space S of basic
linguistic units. Note that these semantic atoms are words but they could be multiword
terms such as Named Entities or compound terms in general. For instance, it is not
possible to infer the semantics of “John Smith” as a semantic composition of “John” and
“Smith” and the semantics must be inferred from its use as a distinct linguistic unit. The
same is true for some common terms; for example, the concept of “black hole” is not the
semantic composition of the concepts of “hole” and “black.” In our framework, we will
refer to these atoms as basic linguistic units. The framework also assumes that there
exists a composition function © that returns a new embedding given two representa-
tions and a similarity function 6 that estimates the embedding meaning proximity. The
particularity of ICDS is that both the composition and the similarity functions must be
consistent with the embedding Information Content (vector norms).

In Section 2 we discussed four aspects that a semantic representation model should
cover as desirable properties. The embedding function 7 captures USAGE CONTEXT
and INFORMATION MEASURABILITY. The composition function ® addresses SYSTEM-
ATICITY and, whenever it satisfies certain properties, it maintains the INFORMATION
MEASURABILITY coherence of composite representations. Finally, the semantic similar-
ity function b defines the continuous space of semantic representations.

The key point is that this formal framework captures the duality between Composi-
tional and Distributional Semantics. The semantics of the basic linguistic units modeled
by means of the embedding function 7 is determined by the textual context in which
they appear, but, in turn, the semantics of complex structures is determined by the
composition function ® and the way in which words are combined.

4. Formal Definition and Properties

In this article, we define the notion of Information Theory-based Compositional Distri-
butional Semantics as follows:

Definition 1 (ICDS)
An Information Theory—based Compositional Distributional Semantics representation is a tuple
(7, 8, ®) with an embedding, semantic similarity, and composition function. S being the space of
basic linguistic units:

mn:S — R",
5:R"xR" — R,
O:R"XR" — R"
In the following sections we formalize a set of formal properties for each of the
components of the above definition of ICDS. We cannot be sure that there are no other
possible properties that can be added in future work. However, based on our review

of related work, what we can be sure is that this set of nine properties is sufficient to
capture the particularities and differences among existing embedding functions.

4.1 Embedding Function Properties

The first two properties in Definition 1 affect the embedding function. In the following,
we will denote the atomic linguistic units (words, chunks) as x, y, or z.
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Property 1 (INFORMATION MEASURABILITY)
x being a linguistic unit, the vector norm of its embedding approximates the Information Content

of x.

[ ()| ~ IC(x) = —log(P(x))

INFORMATION MEASURABILITY formalizes what has already been observed in the
experiments developed throughout the literature. That is, the correspondence between
embedding vector norm and word specificity or frequency (see Section 3.1). It states that
the embedding of the word sequence allows for estimating the probability of observing
the corresponding word sequence, which is projected within representation space by m
on the vector terminal point defined by the embedding vector. This property establishes
an explicit link between text embedding and Information Theory.

The consequence is that stopwords and other frequent tokens (with low expected
Information Content) are represented near the origin while infrequent words (with high
expected Information Content) are projected further away from the origin of coordi-
nates. In general, both Static and Contextual Neural Distributional Models comply with
this property (Arora et al. 2016; Levy and Goldberg 2014; Gao et al. 2019; Li et al. 2020).

Property 2 (ANGULAR ISOMETRY)
There must exist isometry between the angular position of embeddings and the expected similar-
ity of utterances according to humans. Being |mt(x)| = |mt(y)|:

cos (7t(x), 7i(y)) o< E(SIM(x, y))

where E(SIM(x, y)) represents the expected similarity according to humans, which cor-
responds with the pragmatic context of the utterances. We assume the hypothetical case
of a representative set of humans who are presented with the utterances, and who are
asked about their semantic similarity.

ANGULAR ISOMETRY states the correspondence between the embedding direction
and the (pragmatic) meaning. This property formalizes the idea of desirable semantic
isometry, that is, it establishes a correspondence between the representation of texts and
their semantic similarity given a fixed degree of specificity (Information Content). Given
two embeddings with similar length (equally informative according to the analysis in
Section 3.1), the expected similarity between represented utterances according to human
annotators should be correlated with the angle these vectors maintain.

4.2 Composition Function Properties

The next three properties concern the composition function ®. Unfortunately, it is not
possible for the composition function to predict the probability (i.e., IC) of a compound
expression (“yellow star”) given the probability of its components (P(“yellow”) and
P(“star”)) and its syntactic relationship. This is in fact an inherent limitation of Language
Models in terms of compositionality (see Section 2.1). However, we can state constraints
for the IC of the composite expression. These boundaries define three formal constraints
illustrated in Figure 4. The black and gray dots represent the component and compound
representations, respectively.
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a)
the green b) green grass ) green % . d °
green ° ﬁ/v
green o colour
the ! grass thought
o
Composition Composition Norm Composition Norm Sensitivity to
Neutral Element Lower Bound Monotonicity Structure
Figure 4

Mlustration of composition function properties.

Property 3 (COMPOSITION NEUTRAL ELEMENT)
Null information components (zero norm) do not affect the composition.

[02]] = 0 = ||t} © Ta| = ||T1]]

In principle, adding empty information should not affect the composition. It follows
from COMPOSITION NEUTRAL ELEMENT that when a embedding with (nearly) empty
information is composed with another given embedding, the resulting composite em-
bedding will be very close to the given embedding. For instance, “green” is semantically
similar to “the green,” assuming that “the” is not informative (Figure 4a).

Property 4 (COMPOSITION NORM LOWERBOUND)
The vector norm of the composite embedding is higher than or equal to the norm of each
component; that is, the composition never reduces the Information Content.

101 © Ta| > |71 | 01 © Ta|| > |||

CoMPOSITION NORM LOWERBOUND states that adding textual information should
not reduce the final amount of information. That is, the IC (i.e., vector norm, see
Section 3.1) of an utterance embedding increases when adding words. For instance,
“green grass” is more informative than “green” and “grass” (Figure 4b).

Property 5 (COMPOSITION NORM MONOTONICITY)
The norm of the composite vector is monotonic with respect to the angle between the compound
vectors:

151 = [1221] = 175

I L }:>||?71®772||<||51®173||
cos (T, Tp) > cos (Ty,T3)

COMPOSITION NORM MONOTONICITY states that the more semantically dissimilar
the components are (greater angular distance), the more information the composite
embedding contains. This property responds to the intuition that combining two se-
mantically distant utterances should produce specific and infrequent utterances, that is,
with a high information content associated with it. For instance, “green” and “colour”
are semantically close and their representation vectors should therefore point to nearby
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areas in the infinite (Figure 4c). That is to say that “green” and “colour” have an angular
distance that is less than that of two semantically unrelated words, such as “green” and
“thought.” The compound term “green thought” is therefore more specific, less likely, and
more informative than “green colour”; and its vector norm should therefore be larger.
In other words, under fixed single vector norms (equal IC), the semantic orientation
similarity of components decreases the Information Content of the composition.

In addition to these three properties, there is another aspect to consider in ICDS.
Compositionality requires sensitivity to the linguistic structure.

Property 6 (SENSITIVITY TO STRUCTURE)
Given the three embeddings U1, U,, U3 with an equal norm and angularly equidistant, their
composition is not associative:

171l = [|72]l = [|T5] > 0 L
o L oL = (01 ©02) © T3 # 01 © (02 © T3)
cos (U1, 7,) = cos (U1,73) = cos (05, 73) > 0

Let us explain the motivation for SENSITIVITY TO STRUCTURE. The Principle of
Compositionality assumes that linguistic units are progressively grouped into more
complex semantic units, according to the structure of the language (Figure 4d). That
is, the composition function must be applied on the representations according to how
the words are considered to be structured. For example, assuming constituents, the
composition function on the sentence “This house is very big” is applied following the
brackets: “((This house) is (very big))”.

Unfortunately, we cannot define formal geometric properties that ensure that the
distributional model captures the semantics of composition. However, a basic require-
ment is that 